Skip to main content

Multi-scale Analysis in the Occupation Numbers of Particle States: An Application to Three-Modes Bogoliubov Hamiltonians

  • Conference paper
  • First Online:
Macroscopic Limits of Quantum Systems (MaLiQS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 270))

Included in the following conference series:

  • 321 Accesses

Abstract

In this paper, we describe a multi-scale technique introduced in Pizzo (Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian, [32]) to study many-body quantum systems. The method is based on the Feshbach–Schur map and the scales are represented by occupation numbers of particle states. The main purpose of this method is to implement singular perturbation theory to deal with large field problems. A simple model to apply our method is the three-modes (including the zero mode) Bogoliubov Hamiltonian that here we consider for a sufficiently small ratio between the kinetic energy and the Fourier component of the (positive type) potential corresponding to the two nonzero modes. In space dimension \(d\ge 3\), for an arbitrarily large box and at fixed, large particle density \(\rho \) (i.e., \(\rho \) is independent of the size of the box), this method provides the construction of the ground state vector of the system and its expansion, up to any desired precision, in terms of the bare operators and the ground state energy. In the mean field limiting regime (i.e., at fixed box volume \(|\Lambda |\) and for a number of particles, N, sufficiently large), this method provides the same results in any dimension \(d\ge 1\). Furthermore, in the mean field limit, we can replace the ground state energy with the Bogoliubov energy in the expansion of the ground state vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the word mode both for \(\mathbf {j}\) and \(\frac{2\pi }{L}\mathbf {j}\)

  2. 2.

    Concerning the validity in the thermodynamic limit of the replacement of \(a^*_{\mathbf {0}}a_{\mathbf {0}}\) with its average we refer the reader to Appendix D of [28].

  3. 3.

    The operator \(\sum _{\mathbf {j}\in \mathbb {Z}^d\setminus \{\mathbf {0}\}}a^*_{\mathbf {j}}a_{\mathbf {j}}\) counts the number of particles in the nonzero modes states.

  4. 4.

    We use this notation though the number of steps is in fact \(1+i/2\) being i an even number.

  5. 5.

    \(\mathscr {K}^{Bog\,(i)}_{\mathbf {j}_*}(z)\) is self-adjoint on the domain of the Hamiltonian \(Q^{(>i+1)}_{\mathbf {j}_*}(H^{Bog}_{\mathbf {j}_*}-z)Q^{(>i+1)}_{\mathbf {j}_*}\).

  6. 6.

    Due to point (b) in Theorem 4.6 of [32] reported above, for \(d\ge 3\) the (sufficiently large) density \(\rho \) can be chosen independently of L > 1 to ensure the existence of \(z_*\).

References

  1. Bach, V., Fröhlich, J., Sigal, I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137(2), 205–298 (1998)

    Article  MathSciNet  Google Scholar 

  2. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: A functional integral representation for many Boson systems I: the partition function. Ann. Henri Poincare 8 (2008)

    Google Scholar 

  3. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: A functional integral representation for many Boson systems II: correlation functions. Ann. Henri Poincare 9 (2008)

    Article  MathSciNet  Google Scholar 

  4. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The temporal ultraviolet limit for complex bosonic many-body models. Ann. Henri Poincare 11 (2010)

    Article  MathSciNet  Google Scholar 

  5. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Complex Bosonic many-body models: overview of the small field parabolic flow. Ann. Henri Poincare 18 (2017)

    Article  MathSciNet  Google Scholar 

  6. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68, 1399–1482

    Article  MathSciNet  Google Scholar 

  7. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose-Einstein condensation in the Gross-Pitaevskii regime. arXiv:1703.04452

  8. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross-Pitaevskii limit. arXiv:1801.01389

  9. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. (U.S.S.R.) 11, 2332 (1947)

    Google Scholar 

  10. Brietzke, B.: On the second order correction to the ground state energy of the dilute Bose gas. Ph.D. thesis (2017)

    Google Scholar 

  11. Castellani, C., Di Castro, C., Pistolesi, F., Strinati, G.C.: Infrared behavior of interacting Bosons at zero temperature. Phys. Rev. Lett. 78(9) (1997)

    Article  Google Scholar 

  12. Castellani, C., Di Castro, C., Pistolesi, F., Strinati, G.C.: Renormalization- group approach to the infrared behavior of a zero-temperature Bose system. Phys. Rev. B 69(2) (2004)

    Google Scholar 

  13. Cenatiempo, S.: Low dimensional interacting Bosons. arXiv:1211.3772

  14. Cenatiempo, S., Giuliani, A.: Renormalization theory of a two dimensional Bose gas: quantum critical point and quasi-condensed state. J. Stat. Phys. 157(4), 755–829 (2014)

    Article  MathSciNet  Google Scholar 

  15. Derezinski, J., Napiorkowski, M.: Excitation spectrum of interacting Bosons in the mean-field infinite-volume limit. Ann. Henri Poincare 15(12), 2409–2439 (2014)

    Article  MathSciNet  Google Scholar 

  16. Erdös, L., Schlein, B., Yau, H.-T.: Ground-state energy of a low-density Bose gas: a second-order upper bound. Phys. Rev. A 78, 053627 (2008)

    Article  Google Scholar 

  17. Girardeau, M.: Relationship between systems of impenetrable Bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960)

    Article  MathSciNet  Google Scholar 

  18. Giuliani, A., Seiringer, R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009)

    Article  MathSciNet  Google Scholar 

  19. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting Bosons in a trap. Commun. Math. Phys. 332, 559–591 (2013)

    Article  MathSciNet  Google Scholar 

  20. Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc. 368, 6131–6157 (2016)

    Article  Google Scholar 

  21. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471

    Article  MathSciNet  Google Scholar 

  22. Lieb, E.H.: Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev. 130, 1616–1624 (1963)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E.H.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  MathSciNet  Google Scholar 

  24. Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  Google Scholar 

  25. Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217, 127–163 (2001). Errata 225, 219–221 (2002)

    Article  MathSciNet  Google Scholar 

  26. Lieb, E.H., Solovej, J.P.: Ground state energy of the two-component charged Bose gas. Commun. Math. Phys. 252, 485–534 (2004)

    Article  MathSciNet  Google Scholar 

  27. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  Google Scholar 

  28. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminar Series, vol. 34. Birkhäuser, Basel (2005), expanded version available at arXiv:cond-mat/0610117

  29. Nam, P.T., Seiringer, R.: Collective excitations of Bose gases in the mean-field regime. Arch. Rational Mech. Anal. 215, 381–417 (2015)

    Article  MathSciNet  Google Scholar 

  30. Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large bosonic systems: the Gross-Pitaevskii limit revisited. Anal. PDE 9, 459–485 (2016)

    Article  MathSciNet  Google Scholar 

  31. Nam, P.T., Napiorkowski, M., Solovej, J.P.: Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations. J. Funct. Anal. 270, 4340–4368 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pizzo, A.: Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian. arXiv:1511.07022

  33. Pizzo, A.: Bose particles in a box II. A convergent expansion of the ground state of the Bogoliubov Hamiltonian in the mean field limiting regime. arXiv:1511.07025

  34. Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. arXiv:1511.07026

  35. Seiringer, R.: The excitation spectrum for weakly interacting Bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  MathSciNet  Google Scholar 

  36. Yau, H.-T., Yin, J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453503 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pizzo, A. (2018). Multi-scale Analysis in the Occupation Numbers of Particle States: An Application to Three-Modes Bogoliubov Hamiltonians. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds) Macroscopic Limits of Quantum Systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-01602-9_6

Download citation

Publish with us

Policies and ethics