Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

Methane is an important product formed during the bacterial degradation of organic matter in environments such as flooded soils, wetlands, estuaries, marine and freshwater sediments, and the gastrointestinal tract of animals (Whitman et al., 1992). This chapter describes the conditions that lead to biogenic methane formation in natural environments, the metabolic pathways and interactions that lead to methanogenesis, and the implications of these factors on the biogeochemistry of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeckersberg, F., F. Bak, F. Widdel. 1991. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol., 156: 5–14.

    Article  CAS  Google Scholar 

  • Bak, F., K. Finster. 1992. Anaerobic formation and degradation of dimethyl sulfide and methane thiol by new types of acetogenic and methanogenic bacteria. In: Proceedings of the 10th Int. Symp. on Environ. Biogeochem(R.S. Oremland, ed. ), San Francisco. [in press]

    Google Scholar 

  • Baresi, L. 1984. Methanogenic cleavage of acetate by lysates of Methanosarcina barkeri. J. Bacteriol, 160: 365–370.

    CAS  Google Scholar 

  • Batik, S., W. J. Brulla, M. P. Bryant. 1985. PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plus Wolinella sp. degrades benzenoids. Appl. Environ. Microbiol., 50: 304–310.

    Google Scholar 

  • Barker, H. A. 1956. Bacterial fermentations, p. 1–27. Wiley, New York.

    Google Scholar 

  • Blaut, M., V. Müller, G. Gottschalk. 1990. Energetics of methanogens. In: The Bacteria, Vol. 12(J.R. Sokatch and L. Nicholas Ornston, eds.), Academic Press, Inc., San Diego, 505–537.

    Google Scholar 

  • Boone, D.R. 1982. Terminal reactions in the anaerobic digestion of animal waste. Appl. Environ. Microbiol., 41: 57–61.

    Google Scholar 

  • Boone, D.R., S. Worakit, I.M. Mathrani, R.A. Mah. 1986. Alkaliphilic methanogens from high-Ph lake sediments. J. Syst. Appl. Microbiol., 7:230–234

    Article  Google Scholar 

  • Boone, D.R., R.L. Johnson, Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and its implication in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol., 55: 1735–1741.

    PubMed  CAS  Google Scholar 

  • Bryant, M.P. 1979. Microbial methane production: theoretical aspects. J. Anim. Sci., 48: 193–201.

    CAS  Google Scholar 

  • Bryant, M.P., E.A. Wolin, M.J. Wolin, R.S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol., 59: 20–31.

    Article  PubMed  CAS  Google Scholar 

  • Buswell, A.M., W.D. Hatfield. 1939. Anaerobic fermentations. Illinois State Water Survey, Urbana, Ill.

    Google Scholar 

  • Cheeseman, P., A. Toms-Wood, R.S. Wolfe. 1972. Isolation and properties of a fluorescent compound, Factor F420, from Methanobacteriumstrain M.o.H. J. Bacterol., 112: 527–531.

    CAS  Google Scholar 

  • Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    Article  CAS  Google Scholar 

  • Conrad, R., B. Wetter. 1990. Influence of temperature on the energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other bacteria. Arch. Microbiol., 155: 94–98.

    Article  CAS  Google Scholar 

  • Conrad, R., B. Schink, T.J. Phelps. 1986. Thermodynamics of H2-producing and H2-consuming metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS MicrobioL Ecol, 38: 353–360.

    Article  CAS  Google Scholar 

  • Conrad, R., F. Bak, H.F. Seitz, B. Thebrath, H.P. Mayer, H. Schultz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bcteria in anoxic paddy soil and lake sediment. FEMS MicrobioL Ecol, 62: 285–294.

    Article  CAS  Google Scholar 

  • Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectroscopic analysis of carbon dioxide. Geochim. Cosmochim. Acta, 12: 133–149.

    Article  CAS  Google Scholar 

  • Dacey, J.W.H., M.J. Klug. 1979. Methane efflux from lake sediments through water lilies. Science 203: 1253 - 1255.

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, A. Jussofie, G. Gottschalk. 1988. A methyl-coM methylreductase system from methanogenic bacterium strain Gö1 not requiring ATP for activity. FEBS Lett., 241: 60–64.

    Article  PubMed  CAS  Google Scholar 

  • DiMarco, A.A., T.A. Bobik, R.S. Wolfe. 1990. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem., 59: 355–394.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, D.F., E. Weeg-Aessens, D.R. Shelton, J.M. Tiedje. 1988. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ. Microbiol, 54: 1354–1359.

    PubMed  CAS  Google Scholar 

  • Ferry, J.G. (ed.) 1993. Methanogenesis. Chapman & Hall. [in preparation].

    Google Scholar 

  • Gunsalus, R.P., R.S. Wolfe. 1978. ATP activation and properties of the methyl coenzyme M reductase system in Methanobacterium thermoautotrophicum. J. Bacteriol, 135: 851–857.

    PubMed  CAS  Google Scholar 

  • Gunsalus, R.P., R.S. Wolfe. 1980. Methyl coenzyme M reductase from Methanobacterium thermoautotrophicum: resolution and properties of the components. J. BioL Chem., 255: 1891–1895.

    PubMed  CAS  Google Scholar 

  • Hanson, R.S., A.I. Netrusov, K. Tsuji. 1992. The obligate methanotrophic bacteria: Methylococcus, Methylomonas, and Methylosinus. In: The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications(A. Ballows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), second edition. Springer-Verlag, New York, p. 2350–2364.

    Google Scholar 

  • Hoefs, J. 1987. Stable Isotope Geochemistry, 3rd edition, p. 22–24. Springer-Verlag, New York.

    Google Scholar 

  • Houwen, F.P., C. Dijkema, C.C.H. Schoenmakers, A.J.M. Stams, A.J.B. Zehnder. 1987. 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett., 41:269–274.

    Article  CAS  Google Scholar 

  • Hungate, R.E. 1966. The Rumen and Its Microbes, p. 1–533. Academic Press, New York.

    Google Scholar 

  • Jones, W.J., D.P. Nagel Jr., W.B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev., 51: 135–177.

    PubMed  CAS  Google Scholar 

  • Kandler, O., and H. König. 1985. Cell envelopes of archaebacteria. In: The Bacteria: Vol. VIII, Archaebacteria( C.R. Woese and R.S. Wolfe, eds.), Academic Press, Orlando, Fla., p. 413–457.

    Google Scholar 

  • Kiene, R.P. 1991. Production and consumption of methane in aquatic sediments. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes( J.E. Rogers and W.B. Whitman, eds.), American Society for Microbiology, Washington, D.C., p. 111–146.

    Google Scholar 

  • Krumböck, M., R. Conrad. 1991. Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol., 85: 247–256.

    Article  Google Scholar 

  • Krzycki, J.A., J.G. Zeikus. 1984. Acetate catabolism by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett., 25: 27–32.

    Article  CAS  Google Scholar 

  • Langworthy, T.A. 1985. Lipids of archaebacteria. In: The Bacteria: Vol. VIII, Archaebacteria( C.R. Woese and R.S. Wolfe, eds.), Academic Press, Orlando, Fla., p. 413–457.

    Google Scholar 

  • Leisinger, T., W. Brunner. 1986. Poorly degradable substances. In: Biotechnology: Microbial Degradations, Vol. 8 (W. Schönborn, ed.), VCH Verlagsgesellschaft, Weinheim, Germany, p. 475–513.

    Google Scholar 

  • Lidstrom, M.E. 1992. The aerobic methylotrophic bacteria. In: The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications(A. Ballows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), second edition. Springer-Verlag, New York, p. 432–445.

    Google Scholar 

  • Liu, Y., D.R. Boone, C. Choy. 1990. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol., 40: 111–116.

    Article  Google Scholar 

  • Ljungdahl, L.G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol., 40: 415–450.

    Article  CAS  Google Scholar 

  • Lovley, D.R., S. Goodwin. 1988. Hydrogen concentration as an indicator of the predominant terminal electron acceptor reactions in aquatic sediments. Geochim. Cosmochim. Acta, 52: 2993–3003.

    Article  CAS  Google Scholar 

  • Mackie, R.I., M.P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol., 41:1363–1373.

    PubMed  CAS  Google Scholar 

  • Maestrojuân, G.M., D.R. Boone. 1991. Characterization of Methanosarcina barkeri strains MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol., 41: 267–274.

    Article  Google Scholar 

  • Maestrojuân, G.M., D.R. Boone, L. Xun, R.A. Mah, L. Zhang. 1990. Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus, gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int. J. Syst. Bacteriol., 40: 117–122.

    Article  Google Scholar 

  • Mah, R.A., M.R. Smith, L. Baresi. 1978. Studies on an acetate-fermenting strain of Methanosarcina. Appl. Environ. Microbiol., 35: 1174–1184.

    PubMed  CAS  Google Scholar 

  • Mathrani, I.M., D.R. Boone, R.A. Mah, G.E. Fox, P.P. Lau. 1988. Methanohalobium zhilinae, gen. nov. sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol., 38: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, P.L. 1964. The methane fermentation. In: Principles and Applications in Aquatic Microbiology(H. Heukelekian and N.C. Dondero, eds.), John Wiley & Sons, New York, p. 314–343.

    Google Scholar 

  • McInerney, M.J. 1986. Transient and persistent associations among prokaryotes. In: Bacteria in Nature, Vol. 2 ( E.R. Leadbetter and J.S. Poindexter, eds.), Plenum Publishing Corp., New York, p. 293–338.

    Google Scholar 

  • McInerney, M.J., M.P. Bryant, N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol., 122: 129–135.

    Article  CAS  Google Scholar 

  • McInerney, M.J., M.P. Bryant, R.B. Hespell, J.W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol., 41: 1029–1039.

    PubMed  CAS  Google Scholar 

  • Miller, T.L. 1991. Biogenic sources of methane. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes(J.E. Rogers and W.B. Whitman, eds.), Amer. Soc. Microbiol., Washington, D.C., p. 175–187.

    Google Scholar 

  • Nagle, D.P., Jr., R.S. Wolfe. 1983. Component A of the methyl coenzyme M methylreductase system of Methanobacterium: resolution into four components. Proc. Nat. Acad. Sci. USA, 80: 2151–2155.

    Article  PubMed  CAS  Google Scholar 

  • Ni, S., D.R. Boone. 1991. Isolation and characterization of a dimethylsulfidedegrading methanogen from an oil well, characterization of Methanolobus siciliaeT4/MT, and emendation of M siciliae. Int. J. Syst. Bacteriol., 41: 410–416.

    Article  CAS  Google Scholar 

  • Ni, S., D.R. Boone. 1993. Degradation of dimethyl sulfide and methane thiol by methanogenic bacteria. In: Proceedings of the 10th Int. Symp. on Environ. Biogeochem(R.S. Oremland, ed.), San Francisco. [in press]

    Google Scholar 

  • Oremland, R.S., L.M. Marsh, S. Polcin. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature (London), 296: 143–145.

    Article  CAS  Google Scholar 

  • Oremland, R.S., M.J. Whiticar, F.S. Strohmaier, R.P. Kiene. 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim. Cosmochim. Acta, 51: 1895–1904.

    Article  Google Scholar 

  • Oremland, R.S., R.P. Kiene, I. Mathrani, M.J. Whiticar, D.R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethylsulfide. Appl. Environ. Microbiol., 55: 994–1002.

    PubMed  CAS  Google Scholar 

  • Patel, G.B., G.D. Sprott, J.E. Fein. 1990. Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidophilic methanogen. Int. J. Syst. Bacterol., 40: 12–18.

    Article  Google Scholar 

  • Poirot, C.M., S.W.M. Kengen, E. Valk, J.T. Keltjens, C. van der Drift, G.D. Vogels. 1987. Formation of methylcoenzyme M from formaldehyde by cell-free extracts of Methanobacterium thermoautotrophicum: evidence for involvement of a corrinoid-containing methyltransferase. FEMS Microbiol. Lett., 40: 7–13.

    Article  CAS  Google Scholar 

  • Reeburgh, W.S. 1976. Methane consumption in Cariaco Trench waters and sediments. Earth Planetary Sci. Lett., 28: 337–344.

    Article  CAS  Google Scholar 

  • Reeburgh, W.S., D.T. Heggie. 1977. Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol. Oceanogr., 22: 1–9.

    Article  CAS  Google Scholar 

  • Romesser, J.A., R.S. Wolfe, F. Mayer, E. Spiess, A. Walther-Mauruschat. 1979. Methanogenium, a genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol., 121: 147–153.

    Article  CAS  Google Scholar 

  • Striegl, R.G., A.L. Ishii. 1989. Diffusion and consumption of methane in an unsaturated zone in north-central Illinois, U.S.A. J. Hydrology, 111: 133–143.

    Article  CAS  Google Scholar 

  • Taylor, C.D., R.S. Wolfe. 1974. Structure and methylation of coenzyme M (HSCH2CH2SO3). J. Biol. Chem., 249: 4879–4885.

    PubMed  CAS  Google Scholar 

  • Thiele, J.H., J.G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol., 54: 20–29.

    PubMed  CAS  Google Scholar 

  • Tyler, S.C. 1991. The global methane budget. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes( J.E. Rogers and W.B. Whitman, eds.), Amer. Soc. Microbiol., Washington, D.C., p. 7–38.

    Google Scholar 

  • Van Beelen, P., J.F.A. Labro, J.T. Keltjens, W.J. Geerts, G.D. Vogels, W.H. Laarhoven, W. Guijt, C.A.G. Haasnoot. 1984. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem., 139: 359–365.

    Article  PubMed  Google Scholar 

  • Vogels, G.D., J.T. Keltjens, van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms( A.J.B. Zehnder, ed.), John Wiley & Sons, New York, p. 707–770.

    Google Scholar 

  • Walther, R., K. Fahlbusch, R. Sievert, G. Gottschalk. 1981. Formation of trideuteromethane from deuterated trimethylamine or methylamine by Methanosarcina barkeri. J. Bacteriol., 148: 371–373.

    PubMed  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1988. A methane flux time series for tundra environments. Global Geochem. Cycles, 2: 399–409.

    Article  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh, K.A. Sandbeck. 1990. Rapid methane oxidation in a landfill cover soil. AppL Environ. Microbiol., 56: 3405–3411.

    PubMed  CAS  Google Scholar 

  • Whiticar, M.J., E. Faber, M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim. Cosmochim. Acta, 50: 693–709.

    Article  CAS  Google Scholar 

  • Whitman, W.B. 1985. Methanogenic bacteria. In: The Bacteria: Archaebacteria, Vol, 8(C.R. Woese and R.S. Wolfe, eds.), Academic Press, Inc., New York, p. 3–84.

    Google Scholar 

  • Whitman, W.B., T.L. Bowen, D.R. Boone. 1992. The methanogenic bacteria. In: The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, second edition ( A. Ballows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Springer-Verlag, New York, p. 719–767.

    Google Scholar 

  • Winfrey, M.R., J.G. Zeikus. 1979. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl. Environ. Microbiol, 37: 244–253.

    PubMed  CAS  Google Scholar 

  • Woese, C.R. 1987. Bacterial evolution. MicrobioL Rev., 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Wolin, M.J. 1982. Hydrogen transfer in microbial communities. In: Microbial Interactions and Communities, Vol. 1( A.T. Bull and J.H. Slater, eds.), Academic Press, London, p. 323–356.

    Google Scholar 

  • Worakit, S., D.R. Boone, R.A. Mah, M.-E. Abdel-Samie, M.M. El-Halwagi. 1985. Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen which grows at high pH values. Int. J. Syst. Bacteriol., 36: 380–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boone, D.R. (1993). Biological Formation and Consumption of Methane. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics