Skip to main content

Development and Application of Antibodies to Primary (DA, L-DOPA) and Secondary (cGMP) Messengers: A technical report

  • Chapter
Neurocytochemical Methods

Part of the book series: NATO ASI Series ((ASIH,volume 58))

Abstract

In the last decade antibodies have been raised against a large number of amine- and amino-acid neurotransmitters and candidates. These antibodies have been used in tracing neuronal connections in the central nervous system and locating the cell bodies and varicose fibers synthesizing these molecules. There are a number of specific difficulties inherent to the use of antibodies against these small, water soluble, molecules. To obtain these antibodies, the small haptens have to be coupled to a larger protein molecule to acquire an immunogenic conjugate. Two fixatives, formaldehyde and glutaraldehyde, have been used in most cases, and highly specific antibodies have been raised against conjugates prepared with both fixatives. In visualizing a molecule cross-linked to tissue constituents the fixative applied is probably the most important factor in combination with the antibody used. Ideally, the procedure for cross-linking small molecules to tissue constituents should be strictly identical with the procedure to prepare the immunogen against which the antibody is raised. The fixative might alter the structure of the hapten and the antibody against this molecule might not recognize the free, unmodified hapten in solution. Furthermore, in the cases of formaldehyde and glutaraldehyde, the fixatives are part of the antigenic determinant, together with an unknown part of the protein molecule to which the hapten is coupled. One more problem is the lack of knowledge about the amount of hapten actually retained by the tissue after fixation. The specificity of an antibody raised against an antigen is the most important factor in determining the usefulness in all its applications. A commonly applied testing criterion is the sensitivity and specificity of a particular antibody in a radioimmunoassay. However, in immunocytochemistry the situation is more complex because one has to deal with an antigen that might be modified in a decisive way by some chemical agent (the fixative) in a surrounding which is not defined (the cellular matrix).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariano MA, Lewicki JA, Brandwein HJ and Murad F (1982) Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proc Natl Acad Sci USA 79: 1316–1320

    Article  PubMed  CAS  Google Scholar 

  • Berkelmans HS, Schipper J, Hudson L, Steinbusch HWM and De Vente J (1989) cGMP immunocytochemistry in aorta, kidney, retina, and brain tissues of the rat after perfusion with nitroprusside. Histochemistry 93: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Berkenbosch F, De Vente J, Schipper J and Steinbusch HWM (1986) Quantitative immunocytochemistry of monoamines, neuropeptides and second messengers in non-biological and biological models. In: HWM Steinbusch (Ed) Monoaminergic Neurons at Light and Electron microscopical Levels. IBRO-Handbook Series: Methods in the Neurosciences, Vol. 10, Wiley and Sons, Chicester, UK

    Google Scholar 

  • Biggio G and Guidotti A (1976) Climbing fiber activation and 3′,5′-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum. Brain Res 107: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Bunn SJ, Garthwaite J and Wilkin GP (1986) Guanylate cyclase activities in enriched preparations of neurones, astroglia and a synaptic complex isolated from rat cerebellum. Neurochem Int 8: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V and Palay SL (1979) Immunocytochemical localization of cyclic GMP: light and electron microscopic evidence for involvement of neuroglia. Proc Natl Acad Sci USA 76: 1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Cumming R, Arbuthnott G and Steiner AL (1979) Characterization of immunofluorescent cGMP-positive fibres in the central nervous system. J Cycl Nucl Res 5: 463–467

    CAS  Google Scholar 

  • Cumming R, Eccleston D and Steiner AL (1977) Immunohistochemical localization of cyclic GMP in rat cerebellum. J Cycl Nucl Res 3: 275–279

    CAS  Google Scholar 

  • De Vente J, Schipper J and Steinbusch HWM (1989c) Formaldehyde fixation of cGMP in distinct cellular pools and their recognition by different cGMP-antisera: an immunocytochemical study into the problem of serum specificity. Histochemistry 91: 401–412

    Article  PubMed  Google Scholar 

  • De Vente J, Manshanden CG, Sikking RA, Ramaekers FCS and Steinbusch HWM (1990) A functional parameter to study heterogeneity of glial cells in rat brain slices: cGMP production in ANF-responsive cells. Glia 3: 43–54

    Article  PubMed  Google Scholar 

  • De Vente J, Bol JGJM and Steinbusch HWM (1989b) Localization of cGMP in the cerebellum of the adult rat: an immunohistochemical study. Brain Res 504: 332–337

    Article  PubMed  Google Scholar 

  • De Vente J, Bol JGJM and Steinbusch HWM (1989a) cGMP-producing, atrial natriuretic factor-responding cells in the rat brain. An immunocytochemical study. Europ J Neurosci 1: 436–460

    Article  Google Scholar 

  • De Vente J, Steinbusch HWM and Schipper J (1987) A new approach to immunocytochemistry of 3′5′-cyclic guanosine monophosphate: preparation, specificity and initial application of a new antiserum against formaldehyde-fixed 3′5′-cyclic guanosine monophosphate. Neuroscience 22: 361–373

    Article  PubMed  Google Scholar 

  • De Vente J, Wietsma JJ, Bol JGJM, Schipper J, Malhotra SK and Steinbusch HWM (1989d) Potassium increases cGMP in glial cells in rat hippocampus slices: a combined biochemical and immunocytochemical study. Neurochem Res Comm 4: 25–31

    Google Scholar 

  • De Vente J, Bol JGJM, Hudson L, Schipper J and Steinbusch HWM (1988) Atrial natriuretic factor-responding and cyclic GMP producing cells in the rat hippocampus: a combined micropharmacological and immunocytochemical approach. Brain Res 446: 387–395

    Article  PubMed  Google Scholar 

  • DeBold AJ, Borenstein HB, Veresse AT and Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sei 28: 89–94

    Article  CAS  Google Scholar 

  • DeCamilli P, Miller PE, Levitt P, Walter U and Greengard P (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11: 761–817

    Article  CAS  Google Scholar 

  • Ferrendelli JA, Steiner AL, McDougal DB, Kipnis DM (1978) Biochem Biophys Res Commun 41: 1061–1067

    Article  Google Scholar 

  • Fesenko EE, Kolesnikov and Lubarsky AL (1985) Induction by cGMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313: 310–313

    Article  PubMed  CAS  Google Scholar 

  • Flynn SG and Davies PO (1985) The biochemistry and molecular biology of atrial natriuretic factor. Biochem J 232: 313–321

    PubMed  CAS  Google Scholar 

  • Furukawa Kl, Tawada Y and Shigekawa M (1988) Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells. J Biol Chem 263: 8058–8065

    PubMed  CAS  Google Scholar 

  • Garthwaite J and Garthwaite G (1987) Cellular origins of cyclic GMP response to excitatory amino acid receptor agonists in rat cerebellum in vitro. J Neurochem 48: 29–39

    Article  PubMed  CAS  Google Scholar 

  • Geffard M, Kah O, Onteniente R, Seguella P, Le Moal M and Delaage M (1984) Antibodies to dopamine: Radioimmunological study of specificity in relation to immunocytochemistry. J Neurochem 42: 1595–1599

    Article  Google Scholar 

  • Hamet P, Tremblay J and Pang SC (1984) Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Comm 123: 515–527

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ (1989) Endothelium-derived nitric oxide: actions and properties. FASEB J 3: 31–36

    PubMed  CAS  Google Scholar 

  • Inagami T (1989) Atrial natriuretic factor. J Biol Chem 264: 3043–3046

    PubMed  CAS  Google Scholar 

  • Jaeger CB, Ruggiero DA, Albert VR, Park DH, Joh TH and Reis DJ (1984) Aromatic L-amino acid decarboxylase in the rat brain: immunocytochemical localization in neurons of the brain stem. Neuroscience 11: 691–713

    Article  PubMed  CAS  Google Scholar 

  • Jaeger CB, Teitelman G, Joh TH, Albert VR, Park DH and Reis DJ (1983) Some neurons of the rat central nervous system contain aromatic-L-amino acid decarboxylase but not monoamines. Science 219: 1233–1235

    Article  PubMed  CAS  Google Scholar 

  • Karaki H, Sato K, Ozaki H and Murakami K (1988) Effects of sodium nitroprusside on cytosolic calcium level in vascular smooth muscle. Europ J Pharmacol 156: 259–266

    Article  CAS  Google Scholar 

  • Larsson L-l (1982) Antigen-defined immunocytochemistry. In: Modern Methods in Pharmacology, Alan R. Liss, New York, p 1

    Google Scholar 

  • Leitman DC and Murad F (1987) Atrial natriuretic factor receptor heterogeneity and stimulation of particulate guanylate cyclase and cyclic GMP accumulation. Endocrinal Metab Clin North Am 16: 79–105

    CAS  Google Scholar 

  • Levitt P, Rakic P, DeCamilli P and Greengard P (1984) Emergence of cyclic guanosine 3′,5′-monophosphate dependent protein kinase immunoreactivity in developing rhesus monkey cerebellum: correlative immunocytochemical and electron microscopic analysis. J Neurosci 4: 2552–2564

    Google Scholar 

  • Mao CC, Guidotti A and Landis S (1975) Cyclic GMP reduction of cerebellar concentrations in ‘nervous’ mutant mice. Brain Res 90: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K and Furchgott RF (1989) Interactions of light and sodium nitrite in producing relaxation of rabbit aorta. J Pharmacol Exp Ther 248: 687–695

    PubMed  CAS  Google Scholar 

  • McCandless DW, Feussner GK, Lust WD and Passonneau JV (1979a) Metabolite levels in brain following experimental seizures: the effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. J Neurochem 32: 755–760

    Article  PubMed  CAS  Google Scholar 

  • McCandless DW, Feussner GK, Lust WD and Passonneau JV (1979b) Metabolite levels in brain following experimental seizures: the effects of maximal electroshock and phenytoin in cerebellar layers. J Neurochem 32: 743–753

    Article  PubMed  CAS  Google Scholar 

  • Meister B, Hokfelt T, Steinbusch HWM, Skagerberg G, Lindvall O, Geffard M, Joh TH, Cuello AC and Goldstein M (1988) Do tyrosine hydroxylase-immunoreactive neurons in the ventrolateral arcuate nucleus produce dopamine or only L-DOPA. J Chem Neuroanat 1: 59–64

    PubMed  CAS  Google Scholar 

  • Mons N, Danel N and Geffard M (1988) Visualization of L-dihydroxyphenylalanine in rat brain by using specific antibodies. Brain Res 451: 403–407

    Article  PubMed  CAS  Google Scholar 

  • Mons N and Geffard M (1987) Specific antisera against the catecholamines: L-3,4-dihydroxyphenylalanine, dopamine, noradrenaline, and octopamine tested by an enzyme-linked immunosorbent assay. J Neurochem 48: 1826–1833

    Article  PubMed  CAS  Google Scholar 

  • Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilatation. J Clin Invest 78: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T and Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor glia. Nature 325: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Novelli A and Henneberry RC (1987) cGMP synthesis in cultured cerebellar neurons is stimulated by glutamate via a Ca2+-mediated, differentiation-dependent mechanism. Brain Res 34: 307–310

    Article  CAS  Google Scholar 

  • Ogura A, Ozaki K, Kudo Y and Amano T (1986) Cytosolic calcium elevation and cGMP production induced by serotonin in a clonal cell of glial origin. J Neurosci 6: 2489–2494

    PubMed  CAS  Google Scholar 

  • Orkand RK (1977) Glial cells. In: Handbook of physiology — The nervous system I. ER Kandel (ed) American Physiological Society, Bethesda, Md, p. 855–875

    Google Scholar 

  • Palmer RMJ, Ashton DS and Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666

    Article  PubMed  CAS  Google Scholar 

  • Paupardin-Tritsch D, Hammond C and Gerschenfeld HM (1986) Serotonin and cyclic GMP both induce an increase in the calcium current in the same identified molluscan neurons. J Neurosci 6: 2715–2723

    PubMed  CAS  Google Scholar 

  • Poeggel G and Luppa H (1988) Histochemistry of nucleotidyl cyclases and cylic nucleotide phosphodiesterases Histochem J 20: 249–268

    Article  PubMed  CAS  Google Scholar 

  • Rubin EH and Ferrendelli JA (1977) Distribution and regulation of cyclic nucleotide levels in cerebellum in vivo. J Neurochem 29: 43–51

    Article  PubMed  CAS  Google Scholar 

  • Schipper J and Tilders FJH (1983) A new technique for studying specificity of immunocytochemical procedures: Specificity of serotonin immunostaining. J Histochem Cytochem 31: 12–18

    Article  PubMed  CAS  Google Scholar 

  • Schultz JE, Pohl SL and Klumpp S (1986) Voltage-gated Ca2+ entry into Paramecium linked to intraciliary increase in cyclic GMP. Nature 322: 271–273

    Article  CAS  Google Scholar 

  • Skagerberg G, Meister B, Hokfelt T, Lindvall O, Goldstein M, Joh T and Cuello AC (1988) Studies on dopamine-,tyrosine hydroxylase and aromatic L-amino acid decarboxylase-containing cells in the rat diencephalon: comparison between formaldehyde-induced histofluorescence and immunofluorescence. Neuroscience 24: 605–620

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1: 2–9

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HWM, De Vente J and Schipper J (1986) Immunohistochemistry of monoamines in the central nervous system. In Panula P, Paivarinta H and Soinila S (Eds) Neurohistochemistry today, Neurology and Neurobiology, Vol. 20, Alan Liss, New York, 75–105

    Google Scholar 

  • Steinbusch HWM and De Vente J (1987) Immunocytochemistry of cyclic GMP in the superior cervical ganglion of the rat: A combined quantitative immunofluorescence and pharmacological in-vitro study. Exp Brain Res 16: 355–360.

    Google Scholar 

  • Steinbusch HWM and Tilders FJH (1987) Immunohistochemical techniques for light- microscopical localization of dopamine, noradrenaline, adrenaline, serotonin and histamine in the central nervous system. In: Steinbusch HWM (Ed) Monoaminergic Neurons at Light and Electron microscopical Levels, IBRO-Handbook Series: Methods in the Neurosciences, Vol. 10, Wiley and Sons, Chicester, UK

    Google Scholar 

  • Steinbusch HWM, Wouterlood FG, De Vente J, Bol JGJM and Berkenbosch F (1988) Immunohistochemical localization of monoamines and cyclic nucleotides. Their application in quantitative immunofluorescence studies and tracing monoaminergic neuronal connections. Acta Histochem, Suppl, 35: 86–106

    CAS  Google Scholar 

  • Steiner AL, Ong S and Wedner HJ (1972) Cyclic nucleotide immunocytochemistry. Adv Cycl Nucl Res 7: 115–155

    Google Scholar 

  • Tramu G, Pillez A and Leonardelli J (1978) An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry. J Histochem Cytochem 26: 322–324

    Article  PubMed  CAS  Google Scholar 

  • Twort CHC and Van Breemen C (1988) Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle. Circ Res 62: 961–964

    PubMed  CAS  Google Scholar 

  • Waldman SA and Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39: 163–196

    PubMed  CAS  Google Scholar 

  • Wedner HJ, Hoffer BJ, Battenberg E, Steiner AL, Parker CW and Bloom FE (1972) A method for detecting cyclic adenosine monophosphate by immunofluorescence. J Histochem Cytochem 20: 293–299

    Article  PubMed  CAS  Google Scholar 

  • Zwiller J, Ghandour MS, Revel MO and Basset P (1981) Immunohistochemical localization of guanylate cyclase in rat cerebellum. Neurosci Lett 23: 31–36

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinbusch, H.W.M., Van Vliet, S.P., Bol, J.G.J.M., De Vente, J. (1991). Development and Application of Antibodies to Primary (DA, L-DOPA) and Secondary (cGMP) Messengers: A technical report. In: Calas, A., Eugène, D. (eds) Neurocytochemical Methods. NATO ASI Series, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84298-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84298-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84300-6

  • Online ISBN: 978-3-642-84298-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics