Skip to main content

Mechanical Development of the Notochord in Xenopus Early Tail-Bud Embryos

  • Conference paper
Biomechanics of Active Movement and Deformation of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 42))

Abstract

How is a developing embryo shaped by the mechanical behavior of groups of cells? We address this question by focusing on a particular morphogenetic event: the elongation and straightening of the frog embryo during the late neurula and early tailbud stages (Fig. 1A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DS, Keller RE, Koehl MAR. The mechanics of notochord elongation, straightening, and stiffening in the embryo of Xenopus laevis. (in prep.)

    Google Scholar 

  • Alexander RMcN (1987) Bending of cylindrical animals with helical fibers in their skin or cuticle. J. Theor. Biol. 124: 97–110

    Article  Google Scholar 

  • Bijtel JH (1958) The mode of growth of the tail in urodele larvae. J. Embryol. Exp. Morph. 6: 466–478

    PubMed  CAS  Google Scholar 

  • Bruns RD, Gross J (1984) Studies on the tadpole tail: 1. Structure and organization of the notochord and its covering layers in R a n a catesbiana. Am. J. Anat. 128: 193–224

    Article  Google Scholar 

  • Clark RB, Cowey JB (1958) Factors controlling the change of shape of some worms. J. Exp. Biol. 35: 731–748

    Google Scholar 

  • Cosgrove DJ (1987) Mechanical and hydraulic aspects of plant cell growth. In: Bereiter-Hahn J, Anderson OR, Reif W-E (eds) Cytomechanics. Springer, Berlin Heidelberg New York, p. 215

    Chapter  Google Scholar 

  • Faupel JH (1964) Engineering design. John Wiley, New York

    Google Scholar 

  • Gere JM, Timoshenko SP (1984) Mechanics of materials, 2nd edn. PWS Engineering, Boston

    Google Scholar 

  • Green, PW (1980) Organogenesis — a biophysical view. Ann. Rev. Plant Physiol. 31: 51–82

    Article  Google Scholar 

  • Grodzinsky A (1983) Electromechanical and physiochemical properties of connective tissues. CRC Critical Rev. Biomed. Engin. 9: 133–199

    CAS  Google Scholar 

  • Hay ED (1984) Collagen and embryonic development. In: Trelstad R (ed) The role of extracellular matrix in development. Alan R. Liss, New York, p 379

    Google Scholar 

  • Holtfreter J (1943) Properties and function of the surface coat in amphibian embryos. J. Exp. Zool. 93: 251–323

    Article  Google Scholar 

  • Horstadius S (1944) Uber die Folge von Chordaextirpation an spaten Gastrulae und Neurulae von Ambystoma punctatum. Zool. Stolkh. 25: 75–88

    Google Scholar 

  • Hettiaratchi DRP, O’Callaghan JR (1978) Structural mechanics of plant cells. J. Theor. Biol. 74: 235–257

    Article  PubMed  CAS  Google Scholar 

  • Keller RE, Cooper M, Danilchik M, Tibbetts P, Wilson P (1989) Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool. 251: 134–154

    Article  PubMed  CAS  Google Scholar 

  • Kitchen IC (1938) The effects of extirpation of the notochord undertaken at the medullary plate stage in Ambystoma mexicanum. Anat. Rec. 72: 34a

    Google Scholar 

  • Kitchen, IC (1949) The effects of notochordectomy in Ambystoma mexicanum. J. Exp. Zool. 112: 393–415

    Article  Google Scholar 

  • Koehl MAR (1977) Mechanical diversity of the connective tissue of the body wall of sea anemones. J. Exp. Biol. 69: 107–125

    Google Scholar 

  • Lehman FE, Ris H (1938) Weitere Untersuchungen über die Entwicklung der Achsenorgene bei partiell chordalosen Tritonlarven. Rev. Suisse Zool. 45: 419–424

    Google Scholar 

  • Malacinski GM, Youn BW (1982) The structure of the anuran amphibian notochord and a re-evaluation of its presumed role in early embryogenesis. Differentiation 21: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Mookerjee S (1953) An experimental study of the development of the notochordal sheath. J. Embryol. Exp. Morph. 1: 411–416

    Google Scholar 

  • Mookerjee S, Deuchar GM, Waddington CH (1953) The morphogenesis of the notochord in amphibia. J. Embryol. Exp. Morph. 1: 399–409

    Google Scholar 

  • Nieuwkoop PD (1946) Experimental investigations on the origin and determination of the germ cells and on the development of the lateral plates and germ ridges in urodeles. Arch. Neerl. Zool. 8: 1–205

    Article  Google Scholar 

  • Niewkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland, Amsterdam

    Google Scholar 

  • Nobel PS (1970) Introduction to biophysical plant physiology. W. H. Freeman, San Francisco

    Google Scholar 

  • Otto F (1962) Tensile structures. MIT Press, Boston

    Google Scholar 

  • Roark RJ, Young WC (1975) Formulas for stress and strain, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Seymore MK (1970) Skeletons of Lumbricus terrestris L. and Arenicola marina (L.). Nature 228: 383–385

    Article  Google Scholar 

  • Sherrer RE (1967) Filament-wound cylinders with axial-symmetric loads. J. Compos. Mat. 1: 344–355

    Article  Google Scholar 

  • Swanson CJ (1974) Application of thin shell theory to helically-wound fibrous cuticles. J. Theor. Biol. 43: 293–304

    Article  PubMed  CAS  Google Scholar 

  • Strohmeier R, Bereiter-Hahn J (1987) Hydrostatic pressure in epidermal cells is dependent on Ca-mediated contractions. J. Cell Sci. 88: 631–640

    PubMed  Google Scholar 

  • Vincent JFV (1982) Structural biomaterials. Macmillan, London

    Google Scholar 

  • Waddington CH and Perry MM (1962) The ultrastructure of the developing urodele notochord. Proc. Roy. Soc. B. 156: 459–483

    Article  Google Scholar 

  • Wadepuhl M, Beyn W-J (1989) Computer simulation of the hydrostatic skeleton. The physical equivalent, mathematics and application to worm-like forms. J.Theor. Biol. 136: 379–402

    Article  PubMed  CAS  Google Scholar 

  • Wainwright SA (1988) Axis and circumference. The cylindrical shape of plants and animals. Harvard University Press, Cambridge

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Edward Arnold, London

    Google Scholar 

  • Weber R (1961) Similar pattern of fine structure in the basement lamella of the skin and the external sheath of the notochord in Xenopus larvae. Experientia 17: 365–366

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koehl, M.A.R., Adams, D.S., Keller, R.E. (1990). Mechanical Development of the Notochord in Xenopus Early Tail-Bud Embryos. In: AkkaÅŸ, N. (eds) Biomechanics of Active Movement and Deformation of Cells. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83631-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83631-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83633-6

  • Online ISBN: 978-3-642-83631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics