Skip to main content

Mechanical and Hydraulic Aspects of Plant Cell Growth

  • Chapter
Cytomechanics

Abstract

As any student beleaguered with plant anatomy or morphology will attest, plant cells come in a myriad of shapes and sizes. In vascular plants, each member of this cell menagerie can usually be traced back through development to small, nearly isodiametric cells of the meristem. This chapter will review the physical basis by which this transformation takes place. Because of space limitations, many important aspects of cell morphogenesis will be omitted. For detailed discussion of biochemical and cytological aspects of plant cell morphogenesis, readers are referred to recent reviews and collections of articles on this subject (Darvill et al. 1980; Dugger and Barnicki-Garcia 1984; Kiermayer 1981; Maclachlan and Fèvre 1982; Robinson and Quader 1982; Taiz 1984). Likewise, it is beyond the scope of this chapter to consider specific influences of environmental agents and hormones on cell shape and size. Readers interested in this aspect of plant growth should consult relevant reviews and other sources (Cleland 1981; MacMillan 1980; Scott 1981; Wareing 1982; Weisenseel and Kicherer 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bisson MA, Gutknecht J (1980) Osmotic regulation in algae. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier, Amsterdam, North-Holland, pp 131–146

    Google Scholar 

  • Boyd JD (1985) Biophysical control of microfibril orientation in plant cell walls. Martinus Nij-hof/Dr Junk, Dordrecht

    Google Scholar 

  • Boyer JS (1985) Water transport. Ann Rev Plant Physiol 36:473–516

    Article  Google Scholar 

  • Cleland RE (1976) The control of cell enlargement. Integration of activity in the higher plant. Symp Soc Exp Biol 31:101–115

    CAS  Google Scholar 

  • Cleland RE (1981) Wall extensibility: hormones and wall extension. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, new series: plant carbohydrates II. Extracellular carbohydrates. Springer, Berlin Heidelberg New York, pp 225–276

    Google Scholar 

  • Cleland RE, Rayle DL (1972) Absence of auxin-induced stored growth in Avena coleoptiles and its implication concerning the mechanism of wall extension. Planta (Berl) 106:61–71

    Article  CAS  Google Scholar 

  • Cleland RE, Rayle DL (1978) Auxin, H+-excretion and cell elongation. Bot Mag Tokyo 1:125–139

    CAS  Google Scholar 

  • Cleland RE, Cosgrove DJ, Tepfer M (1983) Characterization of the in vitro acid extension curves of Avena coleoptiles. Plant Physiol 72:S–74

    Google Scholar 

  • Cleland RE, Cosgrove DJ, Tepfer M (1986) Long-term acid-induced wall extension in an in vitro system. Planta 170:379–385

    Article  Google Scholar 

  • Cosgrove DJ (1981) Analysis of the dynamic and steady-state responses of growth rate and tur-gor pressure to changes in cell parameters. Plant Physiol 68:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1985) Cell wall yield properties of growing tissues. Evaluation by in vivo stress relaxation. Plant Physiol 78:347–356

    CAS  Google Scholar 

  • Cosgrove DJ (1986) Biophysical control of plant cell growth. Ann Rev Plant Physiol 37:377–405

    Article  CAS  Google Scholar 

  • Cosgrove DJ, Cleland RE (1983 a) Solutes in the free space of growing stem tissues. Plant Physiol 72:326–331

    Google Scholar 

  • Cosgrove DJ, Cleland RE (1983 b) Osmotic properties of pea stem internodes in relation to growth and auxin action. Plant Physiol 72:332–338

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Van Volkenburgh E, Cleland RE (1984) Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques. Planta 162:46–52

    Article  PubMed  CAS  Google Scholar 

  • Coster HGL, Steudle E, Zimmermann U (1976) Turgor pressure sensing in plant cell membranes. Plant Physiol 58:636–643

    Article  PubMed  CAS  Google Scholar 

  • Daie J, Wyse RE (1984) Evidence on the mechanism of enhanced sucrose uptake at low cell turgor in leaf discs of Phaseolus coccinius. Physiol Plant 64:547–552

    Article  Google Scholar 

  • Darvill A, McNeil M, Albersheim P, Delmer DP (1980) The primary cell walls of flowering plants. In: Stumpf PK, Conn EE (eds) The biochemistry of plants. Academic Press, London, pp 91–161

    Google Scholar 

  • Darvill AG, Smith CJ, Hall MA (1978) Cell wall structure and elongation growth in Zea mays coleoptile tissue. New Phytol 80:503–516

    Article  CAS  Google Scholar 

  • De Boer AH, Katou K, Mizuno A, Kojima H, Okamoto H (1985) The role of electrogenic xy-lem pumps in K+ absorption from the zylem of Vigna unguiculata: the effects of auxin and fusicoccin. Plant Cell Environ 8:579–586

    Article  Google Scholar 

  • Dugger WM, Barnicki-Garcia S (1984) Structure, function, and biosynthesis of plant cell walls (Symposium in Botany, University of California, Riverside). American Soc Plant Physiologists, Rockville, MD

    Google Scholar 

  • Frey SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann Rev Plant Physiol 37:165–186

    Article  Google Scholar 

  • Green PB (1958) Structural characteristics of developing Nitella internodal cell walls. J Bio-phys Biochem Cytol 4:505–515

    Article  CAS  Google Scholar 

  • Green PB (1969) Cell morphogenesis. Ann Rev Plant Physiol 20:365–394

    Article  Google Scholar 

  • Green PB, Bauer K, Cummins WR (1977) Biophysical model for plant cell growth: auxin effects. In: Jungreis AM, Hodges TK, Kleinzeller A, Schultz SG (eds) Water relations in membrane transport in plants. Academic Press, London, pp 30–45

    Google Scholar 

  • Hayashi R, Morikawa H, Nakajima N, Ichikawa Y, Senda M (1980) Oriented structure of pec-tic polysaccharides in pea edipermal cell walls. Plant Cell Physiol 21:999–1005

    CAS  Google Scholar 

  • Hepler PK (1981) Morphogenesis of tracheary elements and guard cells. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Berlin Heidelberg New York, pp 327–347

    Google Scholar 

  • Hsiao TC, Silk WK, Jing J (1985 a) Leaf growth and water deficits: biophysical effects. In: Baker NR, Davis WD, Ong C (eds) Control of leaf growth, Soc Exp Bio Sem, vol. 27. Cambridge University Press, Cambridge, pp 239–266

    Google Scholar 

  • Hsiao TC, Silk WK, Diedenhofen U, Matson C (1985 b) Spatial distribution of osmoticum and potassium and their deposition rates in the primary root of corn, Zea mays. Plant Physiol 77:S–35

    Google Scholar 

  • Huber DJ, Nevins DJ (1981) Wall-protein antibodies as inhibitors of growth and of autolytic reactions of isolated cell wall. Physiol Plant 53:533–539

    Article  CAS  Google Scholar 

  • Kiermayer O (1981) Cytomorphogenesis in plants. Springer, Berlin Heidelberg New York, p 439

    Google Scholar 

  • Kirst GO, Bisson MA (1979) Regulation of turgor pressure in marine algae: ions an low-molecular weight organic compounds. Aust J Plant Physiol 6:539–556

    CAS  Google Scholar 

  • Labavitch JM (1981) Cell wall turnover in plant development. Ann Rev Plant Physiol 32:385–406

    Article  CAS  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    Article  PubMed  CAS  Google Scholar 

  • Maclachlan G, Fèvre M (1982) An overview of cell wall biosynthesis. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 127–146

    Google Scholar 

  • MacMillan J (1980) Encyclopedia of plant physiology, new series, hormonal regulation of development. I. Molecular aspects of plant hormones. Springer, Berlin Heidelberg New York, p 681

    Google Scholar 

  • Matthews MA, Van Volkenburgh E, Boyer JS (1984) Acclimation of leaf growth to low water potentials in sunflower. Plant Cell Environ 7:199–206

    Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Ann Rev Biochem 53:625–663

    Article  PubMed  CAS  Google Scholar 

  • MĂ©traux JP, Taiz L (1978) Transverse viscoelastic extension in Nitella I. Relation to growth rate. Plant Physiol 61:135–138

    Google Scholar 

  • Molz FM, Boyer JS (1978) Growth-induced water potentials in plant cells and tissues. Plant Physiol 62:423–429

    Article  PubMed  CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Morikawa H, Kitamura S, Senda M (1978) Effect of auxin on changes in the oriented structure of wall polysaccharides in response to mechanical extension in oat coleoptile cell walls. Plant Cell Physiol 19:1553–1556

    CAS  Google Scholar 

  • Nuccitelli R, Jaffe LF (1976) Current pulses involving chloride and potassium efflux relieve excess pressure in Pelvetia embryos. Planta 131:315–320

    Article  CAS  Google Scholar 

  • Okamoto H, Mizuno A, Katou K, Ono Y, Matsumura Y, Kojima H (1984) A new method in growth-electrophysiology: pressurized intra-organ perfusion. Plant Cell Environ 7:139–147

    Article  Google Scholar 

  • Probine MC (1963) Cell growth and the structure and mechanical properties of the wall in in-ternodal cells of Nitella opaca. J Exp Bot 14:101–113

    Article  Google Scholar 

  • Probine MC, Barber NF (1966) The structure and plastic properties of the cell wall of Nitella in relation to extension growth. Aust J Biol Sci 19:439–457

    Google Scholar 

  • Ray PM, Ruesink AW (1962) Kinetic experiments on the nature of the growth mechanism in oat coleoptile cells. Dev Biol 4:377–397

    Article  CAS  Google Scholar 

  • Reinhold L, Kaplan A (1984) Membrane transport of sugars and amino acids. Ann Rev Plant Physiol 35:45–83

    Article  CAS  Google Scholar 

  • Reinhold L, Seiden A, Volokita M (1984) Is modulation of the rate of proton pumping a key event in osmoregulation? Plant Physiol 75:846–849

    Article  PubMed  CAS  Google Scholar 

  • Richmond PA (1983) Patterns of cellulose microfibril deposition and rearrangement in Nitella: in vivo analysis by a birefringence index. J Appl Polymer Sci: Appl Polymer Symp 37:107–122

    CAS  Google Scholar 

  • Richmond PA, MĂ©traux J-P (1984) Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes. In: Dugger WM, Bartnicki-Garcia S (eds) Structure, function, and biosynthesis of plant cell walls. American Society of Plant Physiologists, Rockville, USA, pp 475–476

    Google Scholar 

  • Richmond PA, MĂ©traux J-P, Taiz L (1980) Cell expansion patterns and directionality of wall mechanical properties in Nitella. Plant Physiol 65:211–217

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Quader H (1982) The mjcrotubule-microfibril syndrome. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 109–126

    Google Scholar 

  • Roelofson PA (1965) Ultrastructure of the wall in growing cells. Adv Bot Res 2:69–149

    Article  Google Scholar 

  • Roelofson PA, Houwink AL (1953) Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces sporangiophores. Acta Bot Neerl 2:218–225

    Google Scholar 

  • Roland JC, Vian B (1979) The wall of the growing plant cell: its three-dimensional structure. Int Rev Cytol 61:129–166

    Article  Google Scholar 

  • Scott TK (1981) Encyclopedia of plant physiology, new series, hormonal regulation of development. II. From the cell to the whole plant. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Silk WK, Wagner KK (1980) Growth-sustaining water potential distributions in the primary corn root. A noncompartmented continuum model. Plant Physiol 66:859–863

    CAS  Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Ann Rev Plant Physiol 35:585–657

    Article  CAS  Google Scholar 

  • Taiz L, Richmond PA (1984) Regulation of cell wall mechanical properties in vivo and in vitro. In: Dugger WM, Bartnicki-Garcia S (eds) Structure, function, and biosynthesis of plant Cell Walls. American Society of Plant Physiologists, Rockville, USA, pp 185–194

    Google Scholar 

  • Taiz L, MĂ©traux J-P, Richmond PA (1981) Control of cell expansion in the Nitella internode. In: Kiermayer O (ed) Cytomorphogenesis in plants; cell biology monographs. Springer, Berlin Heidelberg New York, pp 231–264

    Google Scholar 

  • Taiz L, Rayle DL, Eisinger W (1983) Ethylene-induced lateral expansion in etiolated pea stems: The role of acid secretion. lant Physiol 73:413–417

    CAS  Google Scholar 

  • Terry ME, Jones RL, Bonner BA (1981) Soluble cell wall polysaccharides released from pea stems by centrifugation. I. Effect of auxin. Plant Physiol 68:531–537

    CAS  Google Scholar 

  • Van Volkenburgh E, Cleland RE (1986) Wall yield threshold and effective turgor in growing bean leaves. Planta 167:37–43

    Article  Google Scholar 

  • Wainwright SA (1970) Design of hydraulic organisms. Naturwissenschaften 57:321–326

    Article  Google Scholar 

  • Wainwright SA Biggs WD Currey JD Gosline JM (1976) Mechanical design in organiss. Edward Arnold London p 423

    Google Scholar 

  • Wareing PF (1982) Plant growth substances 1982. Academic Press, London, p 683

    Google Scholar 

  • Weisenseel MH, Kicherer RM (1981) Ionic currents as control mechanism in cytomorphogenesis. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Berlin Heidelberg New York, pp 379–400

    Google Scholar 

  • Wolswinkel P (1985) Phloem unloading and turgor-sensitive transport: factors involved in sink control of assimilate partitioning. Physiol Plant 65:331–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cosgrove, D.J. (1987). Mechanical and Hydraulic Aspects of Plant Cell Growth. In: Bereiter-Hahn, J., Anderson, O.R., Reif, WE. (eds) Cytomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72863-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72863-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72865-5

  • Online ISBN: 978-3-642-72863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics