Skip to main content

Determination of Extra-and Intracellular pH Values in Relation to the Action of Acidic Gases on Cells

  • Chapter
Gases in Plant and Microbial Cells

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 9))

Abstract

Gaseous air pollutants such as SO2 or NO2 are soluble in aqueous media. They react with water to form H2SO3, HNO2 and HNO3 which increase the concentration of H+ (or, as H+ does not really exist, that of the hydrogen-bonded complex H3O+ 3H2O) and thereby decrease pH, which is defined as the negative 10log of the proton concentration [H+]. For living cells the control of intracellular pH is essential for the maintenance of normal metabolic functions. The cytoplasmic pH of plant cells is usually close to 7.5 (Raven and Smith 1981). In chloroplasts, the stroma pH increases from about 7.5 to about 8 on illumination (Heldt et al. 1973; Oja et al. 1986), whereas the pH of the thylakoid compartment may drop to pH 5 owing to the transfer of protons from the stroma to the intrathylakoid space (Schuldiner et al. 1972). The large central vacuole of plant cells is usually acidic, with pH varying rather widely in different plant species (Smith and Raven 1979). In the cytoplasm, protons and hydroxyl ions are produced or consumed in many metabolic reactions (Raven 1985, 1986). Still, the internal pH is altered only within well-defined and rather narrow limits even when external pH values are very different (Langworthy 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addanki S, Cahill FD, Sotos JF (1968) Determination of intramitochondrial pH and in-tramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. J Biol Chem 243: 2337–2348

    PubMed  CAS  Google Scholar 

  • Amman D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W (1981) Neutral carrier-based hydrogen ion selective micro-electrode for extra-and intracellular studies. J Anal Chem 53: 2267–2276

    Article  Google Scholar 

  • Atkins WRG (1922) The hydrogen ion concentration of plant cells. Sci Proc R Dublin Soc N5 16: 414–426

    CAS  Google Scholar 

  • Berti A, Felle H, Bentrup FW (1984) Amine transport in Riccia fluitans. Cytoplasmic and vacuolar pH, recorded by a pH-sensitive micrpelectrode. Plant Physiol 76: 75–78

    Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49: 359–378

    PubMed  CAS  Google Scholar 

  • Boron WF, Roos A (1976) Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol 231: 799–808

    PubMed  CAS  Google Scholar 

  • Borst P (1963) Hydrogen transport and transport metabolites. In:Karlson P (ed) Funktionelle und morphologische Organisation der Zelle. Springer, Berlin Göttingen Heidelberg, pp 137–162

    Google Scholar 

  • Böttger M, Bigdon M, Soll HJ (1982) Regulation of and by pH. In:Marme D, Marre E, Hertel R (eds) Plasmalemma and tonoplast:their function in the plant cell. Elsevier, Amsterdam, pp 103–110

    Google Scholar 

  • Bowling DJF (1974) Measurement of intracellular pH in roots using a H+-sensitive microelectrode. In:Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 386–390

    Chapter  Google Scholar 

  • Bown AW (1985) CO2 and intracellular pH. Plant Cell Environ 8: 459–465

    Article  CAS  Google Scholar 

  • Butler TC, Waddell WJ, Poole DT (1966) The pH of intracellular water. Ann NY Acad Sci 133: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Colman B, Mawson BT, Espie GS (1979) The rapid isolation of photosynthetically active mesophyll cells from Asparagus cladophylls. Can J Bot 57: 1505–1510

    Article  Google Scholar 

  • Davies DD (1973) Control of and by pH. Symp Soc Exp Biol 27: 513–529

    PubMed  CAS  Google Scholar 

  • Davies DD (1986) The fine control of cytosolic pH. Physiol Plant 67: 702–706

    Article  CAS  Google Scholar 

  • De Michelis MI, Raven JA, Jayasuriya HD (1979) Measurement of cytoplasmic pH by the DMO technique in Hydrodictyon africanum. J Exp Bot 30: 681–695

    Article  Google Scholar 

  • De Wolf FA, Groen BH, Houte LPA van, Peters F AU, Krab K, Kraayenhof R (1985) Studies on well-coupled photosystem I-enriched subchloroplast particles. Neutral red as a probe for external surface charge rather than internal protonation. Biochim Bio-phys Acta 809: 204–214

    Google Scholar 

  • Drawert H (1955) Der pH-Wert des Zellsaftes. In:Ruhland W (ed) Encyclopedia of plant physiology, vol 1. Springer, Berlin Göttingen Heidelberg, pp 627–648

    Google Scholar 

  • Enser U, Heber U (1980) Metabolie regulation by pH gradients:inhibition of photosynthesis by induced proton transfer across the chloroplast envelope. Biochim Biophys Acta 592: 577–591

    Article  PubMed  CAS  Google Scholar 

  • Espie GS, Colman B (1981) The intracellular pH of isolated photosynthetically active Asparagus mesophyll cells. Planta 15 3: 210–216

    Article  Google Scholar 

  • Felle H (1981) A study of the current-voltage relationships of electrogenic active and passive elements in Riccia fluitans. Biochim Biophys Acta 602: 181–195

    Google Scholar 

  • Felle H (1987) Proton transport and pH control in Sinapis alba root hairs:a study carried out with double-barrelled pH micro-electrodes. J Exp Bot 38: 340–354

    Article  CAS  Google Scholar 

  • Felle H, Berti A (1986) The fabrication of H+-selective liquid-membrane micro-electrodes for use in plant cells. J Exp Bot 37: 1416–1428

    Article  CAS  Google Scholar 

  • Findlay GP, Hope AB (1976) What an inserted micro-electrode actually measures. In:Lüttge U, Pitman MG (eds) Transport in plants II. 4. Electrical properties of plant cells:methods and findings. Springer, Berlin Heidelberg New York, pp 57–59

    Google Scholar 

  • Fiolet JWT, Bakker EP, Dam K van (1974) The fluorescent properties of acridines in the presence of chloroplasts or liposomes on the quantitative relationship between the fluorescence quenching and the transmembrane proton gradient. Biochim Biophys Acta 368: 432–445

    Article  PubMed  CAS  Google Scholar 

  • Garnier RV, Latzko E (1972) Regulation of photosynthetic C-1-fructose diphosphatase. In:Forti G, Avron M, Melandri A (eds) Proc 2nd Int Congr Photosynthesis research. Junk, The Hague, pp 1839–1845

    Google Scholar 

  • Gillies RJ, Deamer DW (1979) Intracellular pH:methods and applications. In:Sanadi DR (ed) Current topics in bioenergetics, vol 9. Academic Press, New York San Francisco London, pp 63–87

    Google Scholar 

  • Goodwin RH, Kavanagh F (1950) Fluorescence of coumarin derivatives as a function of pH. Arch Biochem 27: 152–173

    PubMed  CAS  Google Scholar 

  • Goodwin RH, Kavanagh F (1951) Fluorescence of coumarin derivatives as a function of pH, pt II. Arch Biochem Biophys 36: 442–455

    Article  Google Scholar 

  • Graber ML, Dilillo DC, Friedman BL, Pastoriza-Munoz E (1986) Characteristics of fluoroprobes for measuring intracellular pH. Anal Biochem 156: 202–212

    Article  PubMed  CAS  Google Scholar 

  • Gracanin M, Georgiev M (1962) Ãœber den Einfluß der HC1-und NH3-Dämpfe auf die Reaktion und die Atmung der Pflanzen. Fac Sci Nat Univ Skopje Biol, pp 19–27

    Google Scholar 

  • Grau GG (1960) Gleichgewichte in elektrochemischen Systemen. Eigenschaften der Materie in ihren Aggregatzuständen. 7. Teil. Elektrische Eigenschaften II (Elektrische Systeme). In:Hellwege KH, Hellwege AM, Schäfer K, Lax E (eds) Landolt-Börnstein. Zahlenwerke und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Springer, Berlin Göttingen Heidelberg, pp 839–932

    Google Scholar 

  • Grünhagen HH, Witt HT (1970) Primary ionic events in the functional membrane of photosynthesis. Umbelliferone as indicator for pH changes in one turn-over. Z Natur-forsch 25 b: 373–386

    Google Scholar 

  • Guern J, Mathieu Y, Kurkdjian A (1983) Phosphoenolpyruvate carboxylase activity and the regulation of intracellular pH in plant cells. Physiol Veg 21: 855–866

    CAS  Google Scholar 

  • Guern J, Mathieu Y, Pean M, Pasquier C, Beloeil JC, Lallemand JY (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cells. I. A 31P-NMR description of acid-load effects. Plant Physiol 82: 840–845

    Article  PubMed  CAS  Google Scholar 

  • Gyenes M, Bulychev AA, Kurella AG, Perez Alvarez P (1981) Light-activated H+ transport into the vacuole of Valonia ventricosa. J Exp Bot 32: 1273–1277

    Article  CAS  Google Scholar 

  • Hager A, Moser J (1985) Acetic acid esters and permeable weak acids induce active proton extrusion and extension growth of coleoptile segments by lowering cytoplasmic pH. Planta 163: 391–400

    Article  CAS  Google Scholar 

  • Hampp R, Ziegler I (1977) Sulfate and sulfite translocation via the phosphate translocator of the inner envelope membrane of chloroplasts. Planta 137: 309–312

    Article  CAS  Google Scholar 

  • Haraux F, de Kouchkovsky Y (1980) Measurement of chloroplast internal protons with 9-aminoacridine. Probe binding, dark proton gradient, and salt effects. Biochim Biophys Acta 592: 153–168

    CAS  Google Scholar 

  • Heber U, Laisk A, Pfanz H, Lange OL (1987) Wann ist SO2 Nähr-und wann Schadstoff? Ein Beitrag zum Waldschadensproblem. Allg Forstz 27/28/29: 700–705

    Google Scholar 

  • Heldt HW (1980) Measurement of metabolic movement across the envelope and of the pH in the stroma and the thylakoid space in intact chloroplasts. Meth Enzymol 69: 604–613

    Article  CAS  Google Scholar 

  • Heldt HW, Sauer F (1971) The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta 234: 83–91

    Article  PubMed  CAS  Google Scholar 

  • Heldt HW, Werdan W, Milovancev M, Geller G (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta 314: 224–241

    Article  PubMed  CAS  Google Scholar 

  • Hocking D, Hocking MB (1977) Equilibrium solubility of trace atmospheric air pollutants in water and its bearing on air pollution injury to plants. Environ Pollut 13: 57–64

    Article  CAS  Google Scholar 

  • Hurd-Karrer AM (1939) Hydrogen-ion concentration of leaf juice in relation to environment and plant species. Am J Bot 26: 834–846

    Article  CAS  Google Scholar 

  • Junge W, Schönknecht G, Förster V (1986) Neutral red as an indicator of pH transients in the lumen of thylakoids — some answers to criticism. Biochim Biophys Acta 852: 93–99

    Article  CAS  Google Scholar 

  • Kaiser G, Martinoia E, Schröppl-Meier G, Heber U (1988) Active transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol (in press)

    Google Scholar 

  • Kirne MJ, Ratcliffe RG, Williams RJP, Loughman BC (1982) The application of 31P nuclear magnetic resonance to higher plant tissue. J Exp Bot 33: 656–669

    Article  Google Scholar 

  • Köster S, Heber U (1982) Light scattering of 9-aminoacridine fluorescence as indicator of the phosphorylation state of the adenylate system in intact spinach chloroplasts. Bio-chim Biophys Acta 680: 88–94

    Article  Google Scholar 

  • Kruis A, May A (1962) Lösungsgleichgewichte von Gasen in Flüssigkeiten, Bd 2:Eigenschaften der Materie in ihren Aggregatzuständen, 2 a. Gleichgewichte außer Schmelzgleichgewichten. LösungsgleichgewichteI. In:Schäfer K, Lax E (eds) Landolt-Börn-stein. Zahlenwerke und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Springer, Berlin Göttingen Heidelberg, pp 1–210

    Google Scholar 

  • Kugel H, Mayer A, Kirst GO, Leibfritz D (1987) In vivo 31P-NMR measurements of phosphate metabolism in Platymonas subcordiformis as related to external pH. Eur Biophys J 14: 461–470

    Article  CAS  Google Scholar 

  • Kurkdjian A, Guern J (1978) Intracellular pH in hihger plant cells. I. Improvements in the use of the 5,5-dimethyloxazolidine-2[14C],4-dione distribution technique. Plant Sci Lett 11: 337–344

    Article  Google Scholar 

  • Kurkdjian A, Guern J (1981) Vacuolar pH measurement in higher plant cells. I. Evaluation of the methylamine method. Plant Physiol 67: 953–957

    CAS  Google Scholar 

  • Kurkdjian A, Manigault P, Manigault J, Guern J (1984) Action of fusicoccin on the vacuolar pH of Acer pseudoplatanus protoplasts as evidenced by 9-aminoacridine microfluor-imetry. Plant Sci Lett 34: 1–5

    Article  CAS  Google Scholar 

  • Laisk A, Pfanz H, Schramm MJ, Heber U (1988 a) SO2 fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. I. Computer analysis. Planta 173: 230–240

    CAS  Google Scholar 

  • Laisk A, Pfanz H, Heber U (1988 b) SO2 fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. II. Consequences of SO2 uptake as revealed by computer analysis. Planta 173: 241–252

    Article  CAS  Google Scholar 

  • Langworthy TA (1978) Microbial life in extreme pH values. In:Kushar DJ (ed) Aerobial life in extreme environments. Academic Press, New York London Academic Press, New York London, pp 279–315

    Google Scholar 

  • Leguay JJ (1977) The 5,5-dimethyloxazolidine-2[14C]-4-dione distribution technique and the measurement of intracellular pH in Acer pseudoplatanus cells. Biochim Biophys Acta 497: 329–333

    Article  PubMed  CAS  Google Scholar 

  • Loud A, Barney JC, Pack BA (1965) Quantitative evaluation of cytoplasmic structures in electron micrographs. Lab Invest 19: 996–1008

    Google Scholar 

  • Lüttge U, Smith JAC, Mango G (1982) Membrane transport, osmoregulation and the control of CAM. In:Ting P, Gibbs M (eds) Crassulacean acid metabolism. Am Soc Plant Physiol, Rockville, pp 69–91

    Google Scholar 

  • Maier K, Hinze H, Leuschel L (1986) Mechanisms of sulfite action on the energy metabolism of Saccharomyces cervisiae. Biochim Biophys Acta 848: 120–130

    Article  CAS  Google Scholar 

  • Marigo G, Ball E, Lüttge U, Smith JAC (1982) Use of the DMO-technique for the study of relative changes of cytoplasmic pH in leaf cells in relation to CAM. Z Pflanzenphy-siol 108: 223–233

    CAS  Google Scholar 

  • Mathieu Y, Guern J, Pean M, Pasquier C, Beloeil JC, Lallemand JY (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cells. II. Possible mechanisms involved in pH regulation during acid-load. Plant Physiol 82: 846–852

    CAS  Google Scholar 

  • McClintock M, Higinbotham N, Uribe EG, Cleland RE (1982) Active, irreversible accumulation of extreme level of H2SO4 in the brown alga Desmarestia. Plant Physiol 70: 771–774

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SGA, Dilger JP (1980) Transport of protons across membranes by weak acids. Physiol Rev 60: 825–863

    PubMed  CAS  Google Scholar 

  • Mimura T, Kirino Y (1984) Changes in cytoplasmic pH measured by 31P-NMR in cells of Nitellopsis obtusa. Plant Cell Physiol 25: 813–820

    CAS  Google Scholar 

  • Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248: 7276–7278

    PubMed  CAS  Google Scholar 

  • Moriyasu Y, Shimmen T, Tazawa M (1984) Vacuolar pH regulation in Chara australis. Cell Struct Funct 9: 225–234

    Article  CAS  Google Scholar 

  • Mudd JB (1975) Sulfur dioxide. In:Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York London, pp 9–22

    Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology, 3rd edn. Freeman, San Francisco

    Google Scholar 

  • Ohmori M, Oh-hama T, Furihata K, Miyachi S (1986) Effect of ammonia on cellular pH of Anabaena cylindrica determined with 31P-NMR spectroscopy. Plant Cell Physiol 27: 563–566

    CAS  Google Scholar 

  • Oja V, Laisk A, Heber U (1986) Light induced alkalization of the chloroplast stroma in vivo as estimated from the CO2 capacity of intact sunflower leaves. Biochim Biophys Acta 849: 355–365

    Article  CAS  Google Scholar 

  • Perrin DD (1969) Ionisation constants of inorganic acids and bases in aqueous solutions. IUPAC Chem Data Ser 29, 2nd edn. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt

    Google Scholar 

  • Pfanz H, Dietz KJ (1987) A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J Plant Physiol 129: 41–48

    CAS  Google Scholar 

  • Pfanz H, Heber U (1985) Protonenflüsse und zelluläre Pufferkapazitäten in Blättern bei SO2-Belastung. In:PBWU (ed) Proc Int Worksh Physiology and biochemistry of stressed plants. GSF-Ber 44/85, Neuherberg, pp 103–113

    Google Scholar 

  • Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells and leaf cell organelles in relation to fluxes of potentially acidic air pollutants. Plant Physiol 81: 597–602

    Article  PubMed  CAS  Google Scholar 

  • Pfanz H, Martinoia E, Lange OL, Heber U (1987 a) Mesophyll resistances to SO2 fluxes into leaves. Plant Physiol 85: 922–927

    Article  PubMed  CAS  Google Scholar 

  • Pfanz H, Martinoia E, Lange OL, Heber U (1987 b) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85: 928–933

    Article  PubMed  CAS  Google Scholar 

  • Portis AR, McCarty RE (1976) Quantitative relationships between phosphorylation, electron flow, and internal hydrogen ion concentration in spinach chloroplasts. J Biol Chem 251: 1610–1617

    PubMed  CAS  Google Scholar 

  • Raven JA (1985) pH regulation in plants. Sci Progr 49: 495–509

    Google Scholar 

  • Raven JA (1986) Biochemical disposal of excess H+ in growing plants. New Phytol 104: 175–206

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1974) Significance of hydrogen ion transport in plant cells. Can J Bot 52: 1035–1048

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular plants in relation to intracellular pH regulation. New Phytol 76: 415–431

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1981) Cytoplasmic pH regulation and electrogenic H+ extrusion. In:Smith H (ed) Commentaries in plant science, vol 2. Pergamon, New York Elmsford, pp 27–39

    Google Scholar 

  • Rebeille F, Bligny R, Martin JB, Douce R (1983) Relationship between the cytoplasm and the vacuole phosphate pool in Acer pseudoplatanus cells. Arch Biochim Biophys 225: 143–148

    Article  CAS  Google Scholar 

  • Reid RJ, Field LD, Pitman MG (1985) Effects of external pH, fusicoccin and butyrate on the cytoplasmic pH in barley root tips measured by 31-nuclear magnetic resonance spectroscopy. Planta 166: 341–347

    Article  CAS  Google Scholar 

  • Roberts JKM (1984) Study of plant metabolism in vivo using NMR spectroscopy. Annu Rev Plant Physiol 35: 375–386

    Article  CAS  Google Scholar 

  • Roberts JKM, Jardetzky O (1981) Monitoring of cellular metabolism by NMR. Biochim Biophys Acta 639: 53–76

    PubMed  CAS  Google Scholar 

  • Roberts JKM, Ray PM, Wade-Jardetzky N, Jardetzky O (1980) Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P-NMR. Nature 283: 870–872

    Article  CAS  Google Scholar 

  • Roberts JKM, Ray PM, Wade-Jardetzky N, Jardetzky O (1981 a) Extent of intracellular pH changes during H+ extrusion. Planta 152: 74–78

    Article  CAS  Google Scholar 

  • Roberts JKM, Wade-Jardetzky N, Jardetzky O (1981 b) Intracellular pH measurements by 31P-nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Biochemistry 20: 5389–5394

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Wemmer D, Ray PM, Jardetzky O (1982) Regulation of cytoplasmic and vacuolar pH in maize root tips under different experimental conditions. Plant Physiol 69: 1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Robinson DC, Wellburn A (1983) Light-induced changes in the quenching of 9-aminoac-ridine fluorescence by photosynthetic membranes due to atmospheric pollutants and their products. Environ Pollut 32: 109–120

    Article  CAS  Google Scholar 

  • Romani G, Marrè MT, Marrè E (1983) Effects of permeant weak acids on dark CO2 fixation and malate level in maize root segments. Physiol Veg 21: 867–873

    CAS  Google Scholar 

  • Rottenberg H, Grunwald T, Avron M (1972) Determination of ΔpH in chloroplasts. 1. Distribution of [14C] methylamine. Eur J Biochem 25: 54–63

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner S, Rottenberg H, Avron M (1972) Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur J Biochem 25: 64–70

    CAS  Google Scholar 

  • Segel JH (1976) Biochemical calculations, 2nd edn. Wiley, New York

    Google Scholar 

  • Servaites JC, Ogren WL (1977) pH dependence of photosynthesis and photorespiration in soybean leaf cells. Plant Physiol 60: 693–696

    Article  PubMed  CAS  Google Scholar 

  • Sianoudis J, Küsel AC, Mayer A, Grimme LH, Leibfritz D (1987) The cytoplasmic pH in photosynthesizing cells of the green alga Chlorella fusca measured by 31P-NMR spec-troscopy. Arch Microbiol 147: 25–29

    Article  CAS  Google Scholar 

  • Slavik J (1983) Intracellular pH topography:determination by a fluorescent probe. FEBS Lett 156: 227–230

    Article  PubMed  CAS  Google Scholar 

  • Small J (1946) pH and plants. Bailliere, Tindall & Cox, London

    Google Scholar 

  • Small J (1956) Estimation of pH values (living tissues and saps). In:Paech C, Tracey MV (eds) Modern methods of plant analysis, vol 1. Springer, Berlin Göttingen Heidelberg, pp 375–392

    Google Scholar 

  • Smith FA (1986) Short-term measurements of the cytoplasmic pH of Chara corallina derived from the intracellular equilibration of 5,5-dimethyloxazolidine-2,4-dione (DMO). J Exp Bot 37: 1733–1745

    Article  CAS  Google Scholar 

  • Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30: 289–311

    Article  CAS  Google Scholar 

  • Spanswick RM, Miller AG (1977) Measurement of the cytoplasmic pH in Nitella trans-lucens. Comparison of values obtained by microelectrode and weak acid methods. Plant Physiol 59: 664–666

    CAS  Google Scholar 

  • Steigner W, Köhler K, Simonis W, Urbach W (1988) Transient cytoplasmic pH-changes in correlation with opening of potassium channels in Eremosphaera. J Exp Bot 39: 23–36

    Article  Google Scholar 

  • Stitt M, Wirtz W, Gerhardt R, Heldt HW, Spencer C, Walker D, Foyer C (1985) A comparative study of metabolite levels in plant leaf material in the dark. Planta 166: 354–364

    Article  CAS  Google Scholar 

  • Thomas MD, Hendricks RH, Hill GR (1944) Some chemical reactions of sulphur dioxide after absorption by alfalfa and sugar beets. Plant Physiol 19: 212–226

    Article  PubMed  CAS  Google Scholar 

  • Thomas RC (1978) Ion-sensitive electrodes. How to make and use them. Academic Press, New York London, pp 32–44

    Google Scholar 

  • Torimitsu K, Yazaki Y, Nagasuka K, Ohta E, Sakata M (1984) Effect of external pH on the cytoplasmic and vacuolar pHs in mung bean root-tip cells:a 31P nuclear magnetic resonance study. Plant Cell Physiol 25: 1403–1409

    CAS  Google Scholar 

  • Vu Van T, Heinze T, Buchholz J, Rumberg B (1987) Quantitative relationships between 9-aminoacridine fluorescence and internal pH in broken chloroplasts. In:Biggins J (ed) Progress in photosynthesis research, vol 3. Nijhoff, Dordrecht, pp 189–192

    Google Scholar 

  • Waddell WJ, Butler TC (1959) Calculation of intracellular pH from the distribution of DM0. Application to skeletal muscle of the dog. J Clin Invest 38: 720–729

    CAS  Google Scholar 

  • Wager HG (1974 a) The effect of subjecting peas to air enriched with carbon dioxide. I. The path of gaseous diffusion, the content of CO2 and the buffering of the tissue. J Exp Bot 25: 330–337

    Article  CAS  Google Scholar 

  • Wager HG (1974 b) The effect of subjecting peas to air enriched with carbon dioxide. II. Respiration and the metabolism of the major acids. J Exp Bot 25: 338–351

    CAS  Google Scholar 

  • Weast RC, Astle MJ, Beyer WJ (1986) Handbook of chemistry and physics. CRC, Boca Raton, Fla

    Google Scholar 

  • Werdan K, Heldt HW, Geller G (1972) Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochim Biophys Acta 283: 430–441

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77: 219–262

    Article  CAS  Google Scholar 

  • Woodrow IE, Murphy DJ, Latzko E (1984) Regulation of stromal sedoheptulose-l,7-bis-phosphatase activity by pH and Mg2+ concentration. J Biol Chem 259: 3791–3795

    PubMed  CAS  Google Scholar 

  • Yokota A, Kitaoka S (1985) Correct pK values for the dissociation constant of carbonic acid lower the reported Km values of ribulose bisphosphate carboxylase to half. Presentation of a nomograph and an equation for determining the pK values. Biochem Biophys Res Commun 131: 1075–1079

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfanz, H., Heber, U. (1989). Determination of Extra-and Intracellular pH Values in Relation to the Action of Acidic Gases on Cells. In: Linskens, HF., Jackson, J.F. (eds) Gases in Plant and Microbial Cells. Modern Methods of Plant Analysis, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83346-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83346-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83348-9

  • Online ISBN: 978-3-642-83346-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics