Skip to main content

Biological Impacts of Seasonal Ozone Depletion

  • Chapter
Antarctic Science

Abstract

Since the mid-1970s there has been a marked reduction in the concentration of Antarctic stratospheric ozone during springtime (Fig. 1). These observations were made originally by ground-based instruments but more recently satellite observations have been used to gain a broader picture of the so-called Antarctic ozone hole which develops in September and dissipates in November (Stolarski et al. 1986). The processes involved in the formation and breakup of the ozone hole are discussed by Rycroft (this Vol.). Following the breakdown of the polar vortex, ozone depleted stratospheric air is transported to midlatitudes (Atkinson et al. 1989). A consequence of a reduction in stratospheric ozone concentration is an increase in the amount of ultraviolet (UV) radiation reaching the surface of the Earth. The springtime UV irradiance at Antarctic coastal sites has been found to be as high or higher than at the summer solstice (Frederick and Snell 1988; Fig. 2). As well as an overall increase in the total amount of incident UV, reduced stratospheric ozone concentration leads to an increase in the amount of short wavelength UV (Fig. 3). The biological impact of UV irradiation is extremely wavelength dependent (Caldwell 1981; Smith and Baker 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson H, Adamson E (1992) Possible effects of global climate change on Antarctic terrestrial vegetation. In: Quilty P (ed) Impacts of climate change on Antarctica. Department of the Arts, Sport, the Environment, Tourism and Territories. Australian Government Publishing Service, Canberra, pp 52–62

    Google Scholar 

  • Ainley DG, Fraser WR, Sullivan CW, Torres JJ, Hopkins TL, Smith WO (1986) Antarctic mesopelagic micronekton: Evidence from seabirds that pack ice affects community structure. Science 232: 847–849

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RJ, Matthews WA, Newman PA, Plumb RA (1989) Evidence of the mid-latitude impact of Antarctic ozone depletion. Nature 340: 290–294

    Article  CAS  Google Scholar 

  • Ayers GP, Gras JL (1991) Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 353: 834–835

    Article  CAS  Google Scholar 

  • Banse K (1990) Does iron really limit phytoplankton production in the offshore subarctic Pacific? Limnol Oceanogr 35: 772–775

    Article  CAS  Google Scholar 

  • Barber RT, Chavez FP (1983) Biological consequences of El Nino. Science 222: 1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Bidigare RR (1989) Potential effects of UV-B radiation on marine organisms of the Southern Ocean: distributions of phytoplankton and krill during austral spring. Photochem Photobiol 50: 469–477

    Article  CAS  Google Scholar 

  • Bramich D, Davidson AT, Marchant HJ, McMinn A (1993) Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms. Mar Biol (in press)

    Google Scholar 

  • Caldwell MM (1981) Plant responses to solar ultraviolet radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New Series, Physiological plant ecology, 1. Springer, Berlin Heidelberg New York, pp 169–197

    Google Scholar 

  • Calkins J (1982) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York

    Google Scholar 

  • Calkins J, Thordardottir T (1980) The ecological significance of solar UV radiation on aquatic organisms. Nature 283: 563–566

    Article  Google Scholar 

  • Carreto JI, Carignan MO, Daleo G, De Marco S (1990) Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds? J Plankton Res 12: 909–921

    Article  CAS  Google Scholar 

  • Charlson RL, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 655–661

    Article  CAS  Google Scholar 

  • Charman WN (1990) Ocular hazards arising from depletion of the natural atmospheric ozone layer: a review. Opthalmic Physiol Opt 10: 333–341

    Article  CAS  Google Scholar 

  • Claustre H, Poulet SA, Williams R, Marty J-C, Coombs S, Ben Mlih F, Hapette AM, Martin-Jezequel V (1990) A biochemical investigation of a Phaeocystis sp. bloom in the Irish Sea. J Mar Biol Assoc UK 70: 197–207

    Article  CAS  Google Scholar 

  • Cullen JJ, Lesser MP (1991) Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom. Mar Biol 111: 183–190

    Article  Google Scholar 

  • Davidson AT, Marchant HJ (1992) Protist interactions and carbon dynamics of a Phaeocystis-dominated bloom at an Antarctic coastal site. Polar Biol 12: 387–395

    Article  Google Scholar 

  • de Baar HJW, Buma AG J, Nolting RF, Cadee GC, Jacques G, Trégeur PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65: 105–122

    Article  Google Scholar 

  • Döhler G (1984) Effect of UV-B radiation on the marine diatoms Lauderia annulata and Thalassiosira rotula grown in different salinities. Mar Biol 83: 247–253

    Article  Google Scholar 

  • Döhler G (1992) Impact of UV-B radiation on uptake of 15N-ammonia and 15N-nitrate by phytoplankton of the Wadden Sea. Mar Biol 112: 485–489

    Article  Google Scholar 

  • Döhler G, Worrest RC, Biermann I, Zink J (1987) Photosynthetic 14CO2 fixation and 15N-ammonia assimilation during UV-B radiation of Lithodesmium variabile. Physiol Plant 70: 511–515

    Article  Google Scholar 

  • Ekelund NGA (1991) The effects of UV-B radiation on dinoflagellates. J Plant Physiol 138: 274–287

    CAS  Google Scholar 

  • Ekelund NGA (1992) Studies on the effects of UV-B radiation on phytoplankton of Sub-Antarctic lakes and ponds. Polar Biol 12: 533–537

    Article  Google Scholar 

  • El-Sayed SZ, Stephens FC, Bidigare RR, Ondrusek ME (1990) Effect of ultraviolet radiation on Antarctic marine phytoplankton. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin Heidelberg New York, pp 379–385

    Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone an Antarctica reveal seasonal C1Ox/NOx interaction. Nature 315: 207–210

    Article  CAS  Google Scholar 

  • Frederick JE, Snell HE (1988) Ultraviolet radiation levels during the antarctic spring. Science 241: 438–440

    Article  PubMed  CAS  Google Scholar 

  • Fryxell GA, Kendrick GA (1988) Austral spring microalgae across the Weddell Sea ice edge: spatial relationships found along a northward transect during AMEREZ 83. Deep-Sea Res 35: 1–20

    Article  Google Scholar 

  • Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in the antarctic pack ice and in ice-edge plankton. J Phycol 23: 564–572

    Article  Google Scholar 

  • Gibson JAE, Garrick RC, Burton HR, McTaggart AR (1990) Dimethylsulfide and the alga Phaeocystis pouchetii in antarctic coastal waters. Mar Biol 104: 339–346

    Article  CAS  Google Scholar 

  • Gieskes WWC, Kraay GW (1990) Transmission of ultraviolet light in the Weddell Sea: report of the first measurements made in the Antarctic. BIOMASS Newsl 12: 12–14

    Google Scholar 

  • Häder D-P, Hader M (1990) Effects of UV radiation on motility, photo-orientation and pigmentation in a freshwater Cryptomonas. J Photochem Photobiol B 5: 105–114

    Article  PubMed  Google Scholar 

  • Häder D-P, Worrest RC (1991) Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. Photochem Photobiol 53: 717–725

    Article  Google Scholar 

  • Härdy J, Gucinski H (1989) Stratospheric ozone depletion: implications for marine ecosystems. Oceanography 2: 18–21 Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Helbling EW, Villifane V, Ferrario M, Holm-Hansen O (1992) Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar Ecol Prog Ser 80: 89–100

    Article  Google Scholar 

  • Herndl GJ, Müller-Niklas G, Frick J (1993) Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361: 717–719

    Article  Google Scholar 

  • Higginbottom IR, Hosie GW (1989) Biomass and population structure of a large aggregation of krill near Prydz Bay, Antarctica. Mar Ecol Prog Ser 58: 197–203

    Article  Google Scholar 

  • Holm-Hansen O, Mitchell BG, Vernet M (1989) Ultraviolet radiation in antarctic waters: effects on rates of primary production. Antarct J US 24: 177–178

    Google Scholar 

  • Jacka TH (1983) A computer data base for Antarctic sea ice extent. ANARE Research Notes, No 13 Australian Antarctic Division, Hobart Jitts HR, Morel A, Saijo Y (1976) The relation of oceanic primary production to available photosynthetic irradiance. Aust J Mar Freshwater Res 27: 441–454

    Google Scholar 

  • Jokiel PL, York RH Jr (1984) Importance of ultraviolet radiation in photoinhibition of microalgal growth. Limnol Oceanogr 29: 192–199

    Article  Google Scholar 

  • Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 Concentrations. Nature 349: 772–775

    Article  CAS  Google Scholar 

  • Karentz D (1991) Ecological considerations of Antarctic ozone depletion. Antarct Sci 3: 3–11

    Article  Google Scholar 

  • Karentz D, Lutze LH (1990) Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol Oceanogr 35: 548–561

    Article  Google Scholar 

  • Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108: 157–166

    Article  CAS  Google Scholar 

  • Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27: 326–341

    Article  CAS  Google Scholar 

  • Lorenzen CJ (1979) Ultraviolet radiation and phytoplankton photosynthesis. Limnol Oceanogr 24: 1117–1120

    Article  Google Scholar 

  • Marchant HJ, Davidson AT (1991) Possible impacts of ozone depletion on trophic interactions and biogenic vertical carbon flux in the Southern Ocean. In: Weller G, Wilson CL, Severin BAB (eds) Proc Int Conf Role of Polar Regions in Global Change. Geophysical Institute, Fairbanks, pp 397–400

    Google Scholar 

  • Marchant HJ, Davidson AT, Kelly GJ (1991) UV-B protecting pigments in the marine alga Phaeocystis pouchetii from Antarctica. Mar Biol 109: 391–395

    Article  CAS  Google Scholar 

  • Markham KR, Franke A, Given DR, Brownsey P (1990) Historical Antarctic ozone level trends from herbarium specimen flavonoids. Bull Liasion Groupe Polyphenols 15: 230–235

    CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345: 156–158

    Article  CAS  Google Scholar 

  • Maske H (1984) Daylight ultraviolet radiation and the photoinhibition of phytoplankton carbon uptake. J Plankton Res 6: 351–357

    Article  CAS  Google Scholar 

  • Meyer MA, El-Sayed SZ (1983) Grazing of Euphausia superba Dana on natural populations. Polar Biol 1: 193–197

    Article  Google Scholar 

  • Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62

    Article  CAS  Google Scholar 

  • Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11: 239–248

    Article  Google Scholar 

  • Ryan KG (1992) UV radiation and photosynthetic production in Antarctic sea ice microalgae. J Photochem Photobiol 13: 235–240

    Article  Google Scholar 

  • Sakshaug E, Skjoldal HR (1989) Life at the ice edge. Ambio 18: 60–67

    Google Scholar 

  • Scherer S, Chen TW, Boger P (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88: 1055–1057

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Baker KS (1979) Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem Photobiol 29: 311–323

    Article  CAS  Google Scholar 

  • Smith RC, Baker KS (1989) Stratospheric ozone, middle ultraviolet radiation and phytoplankton productivity. Oceanography 2: 4–10

    Google Scholar 

  • Smith RC, Baker KS, Holm-Hansen O, Olsen R (1980) Photoinhibition of photosynthesis in natural waters. Photochem Photobiol 31: 585–592

    Article  CAS  Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Maclntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959

    Article  PubMed  CAS  Google Scholar 

  • Smith WO Jr (1987) Phytoplankton dynamics in marginal ice zones. Oceanogr Mar Biol Annu Rev 25: 11–38

    Google Scholar 

  • Smith WO Jr, Nelson DM (1986) Importance of ice edge phytoplankton production in the Southern Ocean. Bioscience 36: 251–257

    Article  CAS  Google Scholar 

  • Smith WO Jr, Keene NK, Comiso JC (1988) Interannual variability in estimated primary productivity of the Antarctic marginal ice zone. In: Sahrhage D (ed) Antarctic Ocean and Resources Variability. Springer, Berlin Heidelberg New York, pp 131–139

    Google Scholar 

  • Smith WO Jr, Codispoti LA, Nelson DM, Manley T, Buskey EJ, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352: 514–516

    Article  Google Scholar 

  • Stolarski RS, Krueger AJ, Schoeberl MR, McPeters RD, Newman PA, Alpert JC (1986) Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature 322: 808–811

    Article  CAS  Google Scholar 

  • Sunda WG, Swift DG, Huntsman SA (1991) Low iron requirement for growth in oceanic phytoplankton. Nature 351: 55–57

    Article  CAS  Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50: 479–487

    Article  CAS  Google Scholar 

  • Trodahl HJ, Buckley RG (1989) Ultraviolet levels under sea ice during the Antarctic spring. Science 245: 194–195

    Article  PubMed  CAS  Google Scholar 

  • Truesdale RS, Kellogg TB (1979) Ross Sea diatoms: modern assemblage distributions and their relationship to ecologic, oceanographic and sedimentary conditions. Mar Micro paleontol 4: 13–31

    Google Scholar 

  • Turco RP, Toon OB, Whitten RC, Pollack JB, Noerdling P (1981) Tunguska meteor fall of 1908: Effects on stratospheric ozone. Science 214: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Vosjan JH, Dohler G, Nieuwland G (1990) Effect of UV-B irradiance on the ATP content of microorganisms of the Weddell sea (Antarctica). Neth J Sea Res 25: 391–393

    Article  Google Scholar 

  • Voytek MA (1990) Addressing the biological effects of decreased ozone on the Antarctic environment. Ambio 19: 52–61

    Google Scholar 

  • Wassmann P, Vernet M, Mitchell BG, Rey F (1990) Mass sedimentation of Phaeocystis pouchetii in the Barents Sea. Mar Ecol Prog Ser 66: 183–195

    Article  CAS  Google Scholar 

  • Wells ML, Mayer LM (1991) The photoconversion of colloidal iron oxyhydroxides in seawater. Deep-Sea Res 38: 1379–1395

    Article  CAS  Google Scholar 

  • Worrest RC (1983) Impact of solar ultraviolet-B radiation (290-320 nm) upon marine microalgae. Physiol Plant 58: 428–434

    Article  Google Scholar 

  • Worrest RC, Thomson BE, Dyke HV (1981) Impact of UV-B radiation upon estuarine microcosms. Phytochem Phytobiol 33: 861–867

    Article  Google Scholar 

  • Yentsch CS, Yentsch CM (1982) The attenuation of light by marine phytoplankton with special reference to the absorption of near-UV radiation. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York, pp 691–706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchant, H.J. (1994). Biological Impacts of Seasonal Ozone Depletion. In: Hempel, G. (eds) Antarctic Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78711-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78711-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57559-7

  • Online ISBN: 978-3-642-78711-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics