Skip to main content
Log in

Dimethylsulfide and the algaPhaeocystis pouchetii in antarctic coastal waters

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The concentrations of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) were measured in water collected from the Southern Ocean 10 km offshore from Davis Station, Antarctica, during the period May 1987 to January 1988, inclusive. During winter and spring, when the sea-ice was up to 1.9 m thick, DMS, DMSP and DMSO concentrations were low (0.2 to 1.5 nM), as were phytoplankton numbers. The maximum concentration of the sulfur compounds generally occurred in the top 10 m of the water column. DMS levels rose dramatically from early December onwards, reaching a peak of 290 nM at a depth of 15 m in January. This concentration is higher than reported elsewhere in the ocean. These high concentrations occurred at the same time as a bloom of the algaPhaeocystis pouchetii. A significant correlation occurred between DMS concentration and cell numbers of the alga. The ratio of DMS concentration to the number of cells of the alga was considerably higher than reported for blooms of this species elsewhere in the ocean. Up to 10% of the total global flux of DMS to the atmosphere may emanate from antarctic seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ackman, R. G., Tocher, C. S., McLachlan, J. (1966). The occurrence of dimethyl-β-propiothetin in marine phytoplankton. J. Fish. Res. Bd Can. 23: 357–364

    Google Scholar 

  • Andreae, M. O. (1980). Dimethylsulfoxide in marine and freshwaters. Limnol. Oceanogr. 25: 1054–1063

    Google Scholar 

  • Andreae, M. O., Raemdonck, H. (1983). Dimethylsulfide in the surface ocean and the marine atmosphere: a global view. Science, N.Y. 221: 744–747

    Google Scholar 

  • Anness, B. J. (1981). The determination of dimethyl sulfoxide in aqueous solution. J. Sci. Fd Agric. 32: 353–358

    Google Scholar 

  • Barnard, W. R., Andreae, M. O., Iverson, R. L. (1984). Dimethylsulfide andPhaeocystis pouchetii in the southeastern Bering Sea. Contin. Shelf Res. 3: 103–113

    Google Scholar 

  • Bates, T. S., Charlson, R. J., Gammon, R. H. (1987a). Evidence for the climatic role of marine biogenic sulphur. Nature, Lond. 329: 319–321

    Google Scholar 

  • Bates, T. S., Cline, J. D., Gammon, R. H., Kelly-Hansen, S. R. (1987b). Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J. geophys. Res. 93: 2930–2938

    Google Scholar 

  • Berresheim, H. (1987). Biogenic sulfur emissions from the subantarctic and antarctic oceans. J. geophys. Res. 92: 13245–13262

    Google Scholar 

  • Bölter, M., Dawson, R. (1982). Heterotrophic utilization of biochemical compounds in antarctic waters. Neth. J. Sea Res. 16: 315–332

    Google Scholar 

  • Brimblecombe, P., Shooter, D. (1986). The photo-oxidation of dimethylsulfide in aqueous solution. Mar. Chem. 19: 343–353

    Google Scholar 

  • Cantoni, G. L., Anderson, D. G. (1956). Enzymatic cleavage of dimethylpropiothetin byPolysiphonia lanosa. J. biol. Chem. 222: 171–177

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, Lond. 326: 655–661

    Google Scholar 

  • Cox, G. F. N., Weeks, W. F. (1983). Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol. 29: 306–316

    Google Scholar 

  • Dacey, J. W. H., Blough, N. V. (1987). Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys. Res. Lett. 14: 1246–1249

    Google Scholar 

  • Deprez, P. P., Franzmann, P. D., Burton, H. R. (1986). Determination of reduced sulfur gases in Antarctic lakes and seawater by gas chromatography after solid adsorbent preconcentration. J. Chromat. 362: 9–21

    Google Scholar 

  • Eberlein, K., Leal, M. T., Hammer, K. D., Hickel, W. (1985). Dissolved organic substances during aPhaeocystis pouchetii bloom in the German Bight (North Sea). Mar. Biol. 89: 311–316

    Google Scholar 

  • El-Sayed, S. Z., Biggs, D. C., Holm-Hansen, O. (1983). Phytoplankton standing crop, primary production and near-surface nitrogenous nutrient fields in the Ross Sea, Antarctica. Deep-Sea Res. 30: 871–886

    Google Scholar 

  • Farwell, S. O., Gluck, S. J. (1980). Glass surface deactivants for sulfur containing gases. Analyt. Chem. 52: p. 1968

    Google Scholar 

  • Franzmann, P. D., Deprez, P. P., Burton, H. R., van den Hoff, J. (1987). Limnology of Organic Lake, Antarctica, a meromictic lake that contains high levels of dimethyl sulfide. Aust. J. mar. Freshwat. Res. 38: 409–417

    Google Scholar 

  • Fryxell, G. A., Kendrick, G. A. (1988). Austral spring microalgae across the Weddel Sea ice edge: spatial relationships found along a northern transect during AMERIEZ 83. Deep-Sea Res. 35: 1–20

    Google Scholar 

  • Garrison, D. L., Buck, K. R., Fryxell, G. A. (1987). Algal assemblages in the antarctic pack ice and in ice-edge plankton. J. Phycol. 23: 564–572

    Google Scholar 

  • Gibson, J. A. E., Garrick, R. C., Burton, H. R., McTaggart, A. R. (1989). Dimethylsulfide concentrations in the ocean close to the antarctic continent. Geomicrobiol. J. 6: 179–183

    Google Scholar 

  • Guillard, R. R. L., Hellebust, J. A. (1971). Growth and production of extracellular substances by two strains ofPhaeocystis pouchetii. J. Phycol. 7: 330–338

    Google Scholar 

  • Hatakeyama, S., Izumi, K., Akimoto, H. (1985). Yield of SO2 and formation of aerosol in the photo-oxidation of DMS under atmospheric conditions. Atmosph. Environ. 19: 135–141

    Google Scholar 

  • Holligan, P. M., Turner, S. M., Liss, P. S. (1987). Measurements of dimethyl sulphide in frontal regions. Contin. Shelf Res. 7: 213–224

    Google Scholar 

  • Ivey, J. P., Davies, D. M., Morgan, V., Ayers, G. P. (1986). Methanesulphonate in antarctic ice. Tellus 38B: 375–379

    Google Scholar 

  • Kanagawa, T., Kelly, D. P. (1986). Breakdown of dimethyl sulfide by mixed cultures and byThiobacillus thioparus. Fedn eur. microbiol. Soc. (FEMS) Lett. 34: 13–19

    Google Scholar 

  • Kiene, R. P. (1988). Dimethyl sulfide metabolism in salt marsh sediments. Fedn eur. microbiol. Soc. (FEMS) Microbiol Ecol. 53: 71–78

    Google Scholar 

  • Lancelot, C., Billen, G., Sournia, A., Weisse, T., Colijn, F., Veldhuis, M. J. W., Davies, A., Wassman, P. (1987).Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the north sea. Ambio 16: 38–46

    Google Scholar 

  • Lancelot, C., Mathot, S. (1985). Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with14C-bicarbonate. II.Phaeocystis pouchetii colonial production. Mar. Biol. 86: 227–232

    Google Scholar 

  • Legrand, M. R., Delmas, R. J., Charlson, R. J. (1988). Climate forcing implications from Vostok ice-core sulphate data. Nature, Lond. 334: 418–420

    Google Scholar 

  • Lovelock, J. E., Maggs, R. J., Rasmussen, R. A. (1972). Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature, Lond. 237: 452–453

    Google Scholar 

  • Mackintosh, N. A. (1973). Distribution of post-larval krill in the antarctic. ‘Discovery’ Rep. 36: 95–156

    Google Scholar 

  • Moestrup, O. (1979). Identification by electron microscopy of marine nanoplankton from New Zealand including the description of four new species. N. Z. Jl Bot. 17: 61–95

    Google Scholar 

  • Nriagu, J. O., Holdway, D. A., Coker, R. D. (1987). Biogenic sulfur and the acidity of rainfall in remote areas of Canada. Science, N.Y. 237: 1189–1192

    Google Scholar 

  • Palmisano, A. C., SooHoo, J. B., SooHoo, S. L., Kottmeier, S. T., Craft, L. L., Sullivan, C. W. (1986). Photoadaption inPhaeocystis pouchetii advected beneath annual sea-ice in McMurdo Sound, Antarctica. J. Plankton Res. 5: 891–906

    Google Scholar 

  • Reed, R. H. (1983). Measurement and osmotic significance ofβ-dimethylsulfoniopropionate in marine macroalgae. Mar. Biol. Lett. 4: 173–181

    Google Scholar 

  • Saigne, C., Legrand, M. (1987). Measurements of methanesulphonic acid in Antarctic ice. Nature, Lond. 330: 240–242

    Google Scholar 

  • Schwartz, S. E. (1988). Are global cloud albedo and climate controlled by marine phytoplankton? Nature, Lond. 336: 441–445

    Google Scholar 

  • Turner, S. M., Malin, G., Liss, P. S., Harbour, D. S., Holligan, P. M. (1988). The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceanogr. 33: 364–375

    Google Scholar 

  • Vairavamurthy, A., Andreae, M. O., Iverson, R. L. (1985). Biosynthesis of dimethylsulfide and dimethylpropiothetin byHymenomas carterae in relation to sulfur source. Limnol. Oceanogr. 30: 59–70

    Google Scholar 

  • White, R. H. (1982). Analysis of dimethyl sulfonium compounds in marine algae. J. mar. Res. 40: 529–536

    Google Scholar 

  • Yin, F., Grosjean, D., Seinfeld, J. H. (1986). Analysis of atmospheric photooxidation mechanisms for organic sulfur compounds. J. geophys. Res. 91: 14417–14438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, J.A.E., Garrick, R.C., Burton, H.R. et al. Dimethylsulfide and the algaPhaeocystis pouchetii in antarctic coastal waters. Mar. Biol. 104, 339–346 (1990). https://doi.org/10.1007/BF01313276

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313276

Keywords

Navigation