Skip to main content

Clostridium botulinum C3 ADP-Ribosyltransferase

  • Chapter
ADP-Ribosylating Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 175))

Abstract

During the last few years various clostridial ADP-ribosylating exoenzymes have been described. These exoenzymes can be divided into two groups. One group is represented by clostridial cytotoxins which are characterized by their ability to ADP-ribosylate actin. Furthermore, all these toxins are binary in structure and consist of a binding component and an unlinked ADP-ribosyltransferase. Members of this family of clostridial ADP-ribosylating toxins are Clostridium botulinum C2 toxin, Clostridium perfringens toxin, and Clostridium spiroforme toxin. These toxins are described in detail by Aktories et al., in this volume. The other group of clostridial ADP-ribosylating exoenzymes is represented by C. botulinum ADP-ribosyltransferase C3 and by the novel ADP-ribosylating Clostridium limosum exoenzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam-Vizi V, Rösener S, Aktories K, Knight DE (1988) Botulinum toxin-induced ADP-ribosylation and inhibition of exocytosis are unrelated events. FEBS Lett 238: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Adari H, Lowy DR, Willumsen BM, der Channing J, McCormick F (1988) Guanosine triphosphate activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240: 518–521

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Frevert J (1987) ADP-ribosylation of a 21–24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247: 363–368

    PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986a) Botulinum C2 toxin ADP-ribosylates actin. Nature 322: 390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986b) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161: 155–162

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987)Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    Google Scholar 

  • Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988a) Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem 172: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Just I, Rosenthal W (1988b) Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Res Commun 156: 361–367

    Article  CAS  Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Avraham H (1990)rho gene amplification and malignant transformation. Biochem Biophys Res Commun 168: 114–124

    Article  PubMed  CAS  Google Scholar 

  • Avraham H, Weinberg RA (1989) Characterization and expression of the human rhoH12 gene product. Mol Cell Biol 9: 2058–2066

    PubMed  CAS  Google Scholar 

  • Barbacid M (1987)ras Genes. Ann Rev Biochem 56: 779–827

    Article  PubMed  CAS  Google Scholar 

  • Banga HS, Gupta SK, Feinstein MB (1988) Botulinum toxin D ADP-ribosylates a 22–24 kDa membrane protein in platelets and HL-60 cells that is distinct from p21N-ras. Biochem Biophys Res Commun 155:263–269

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem 258: 2072–2075

    PubMed  CAS  Google Scholar 

  • Bokoch GM, Parkos CA, Mumby SM (1988) Purification and characterization of the 22000-dalton GTP-binding protein substrate for ADP-ribosylation by botulinum toxin, G22k-J Biol Chem 263:16744–16749

    CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  PubMed  CAS  Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 from procine brain cytosol and its characterization as a GTP-binding protein highly homologus to the rho gene product. FEBS Lett 243: 70–76

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669–2673

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Tavitian A, (1986) The rat gene: a new ras-related gene isolated by the use of a synthetic probe. EMBO J 5: 2203–2208

    PubMed  CAS  Google Scholar 

  • Chardin P, Madaule P, Tavitian A (1988) Coding sequence of human rho cDNAs clone 6 and clone 9. Nucleic Acids Res 16: 2717

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J 8:1087–1092

    PubMed  CAS  Google Scholar 

  • Collier RJ (1990) Diphtheria toxin: structure and function of a cytocidal protein. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society For Microbiology, Washington, pp 3–19

    Google Scholar 

  • De Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S, Nishimura S, Miura K, Ohtsuka E, Kim S (1988) Three-dimensional structure of an oncogenic protein: catalytic domain of human c-H-ras. Science 239: 888–893

    Article  PubMed  Google Scholar 

  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264:16378–16382

    Google Scholar 

  • Didsbury JR, Uhling RJ, Syndermann R (1990) Isoprenylation of the low molecular mass GTP-binding proteins rac 1 and rac 2: possible role in membrane localization. Biochem Biophys Res Commun 171:804–812

    Article  PubMed  CAS  Google Scholar 

  • Downward J, Riehl R, Wu L, Weinberg RA (1990) Identification of a nucleotide exchange-promoting activity for p21ras. Proc Natl Acad Sci USA 87: 5998–6002

    Article  PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT (1972) Activation of a toxic component ofClostridium botulinum type C and D by trypsin. Appl Microbiol 24:108–113

    PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT, Reed SM (1972) Bacteriophage and the toxigenicity of Clostridium botulinum type D. Nature, New Biology 235: 16–17

    CAS  Google Scholar 

  • Garrett MD, Self AJ, von Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras, R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    PubMed  CAS  Google Scholar 

  • Gibbs JB, Schaber MD, Allard WJ, Sigal IS, Scolnick EM (1988) Purification ofras GTPase activating protein from bovine brain. Proc Natl Sci USA 85: 5026–5030

    Article  CAS  Google Scholar 

  • Habermann B, Mohr C, Just I, Aktories K (1991) ADP-ribosylation and de-ADP-ribosylation of the rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotides and pH. Biochim Biophys Acta 1077, 253–258

    Article  PubMed  CAS  Google Scholar 

  • Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 129: 93–179

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only sbme are palmitoylated. Cell 57:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Hoshijima M, Kondo J, Kikuchi A, Yamamoto K, Takai Y (1990) Purification and characterization from bovine brain membranes of a GTP-binding protein with a Mr of 21 000 ADP-ribosylated by an ADP-ribosyltransferase contaminated in botulinum toxin type C1-identification as the rhoA gene product. Mol Brain Res 7: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O, Kato I (1968) Diphtheria-toxin-dependent-adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243: 3553–3555

    PubMed  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72: 2284–2289

    Article  PubMed  CAS  Google Scholar 

  • Isomura M, Kaibuchi K, Yamamoto T, Kawamura S, Katayama M, Takai Y (1990) Partial purification and characterization of GDP dissociation stimulator (GDS) for the rho proteins from bovine brain cytosol. Biochem Biophys Res Commun 169: 652–659

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Yamamoto K, Fujita T, Takai Y (1988) ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1. J Biol Chem 263:16303–16308

    PubMed  CAS  Google Scholar 

  • Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40

    Article  PubMed  CAS  Google Scholar 

  • Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84: 779–783

    Article  PubMed  CAS  Google Scholar 

  • Maller JL, Krebs EG (1977) Progesterone-stimulated meiotic cell divison in Xenopus oocytes. J Biol Chem 252:1712–1718

    PubMed  CAS  Google Scholar 

  • Matsuoka I, Syuto B, Kurihara K, Kubo S (1987) ADP-ribosylation of specific membrane proteins in pheochromocytoma and primary-cultured brain cells by botulinum neurotoxins type C and D. FEBS Lett 216: 295–299

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka I, Sakuma H, Syuto B, Moriishi K, Kubo S, Kurihara K (1989) ADP-ribosylation of 24–26-kDa GTP-binding proteins localized in neuronal and non-neuronal cells by botulinum neurotoxin D. J Biol Chem 264: 706–712

    PubMed  CAS  Google Scholar 

  • Mege JL, Volpi M, Becker EL, Sha’afi RJ (1988) Effect of botulinum D toxin on neutrophils. Biochem Biophys Res Commun 152: 926–932

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Koch R, Fanick W, Hilz H (1988) ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoppe Seyler 369: 579–583

    Article  PubMed  CAS  Google Scholar 

  • Mohr C, Just I, Hall A, Aktories K (1990) Morphological alterations of Xenopus oocytes induced by valine-14 p21rho depend on isoprenylation and are inhibited by Clostridium botulinum C3 ADP-ribosyltransferase. FEBS Lett 275:168–172

    Article  PubMed  CAS  Google Scholar 

  • Morii N, Sekine A, Ohashi Y, Nakao K, Imura H, Fujiwara M, Narumiya S (1988) Purification and properties of the cytosolic substrate for botulinum ADP-ribosyltransferase. J Biol Chem 263: 12420–12426

    PubMed  CAS  Google Scholar 

  • Moriishi K, Syuto B, Oguma K, Saito M (1990) Separation of toxic activity and ADP-ribosylation activity of botulinum neurotoxin D. J Biol Chem 265:16614–16616

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252: 2455–2457

    PubMed  CAS  Google Scholar 

  • Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257

    PubMed  CAS  Google Scholar 

  • Nishiki T, Narumiya S, Morii N, Yamamoto M, Fujiwara M, Kamata Y, Sakaguchi G, Kozaki S (1990) ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultures PC-12 cells. Biochem Biophys Res Commun 167: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Narumiya S (1987) ADP-ribosylation of a Mr 21 000 membrane protein by type D botulinum toxin. J Biol Chem 262:1430–1433

    PubMed  CAS  Google Scholar 

  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nupleotide-binding of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21 -rho induces rapid change in cell morphology. J Cell Biol 111:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer T, Helmreich EJM (1988) Structural and functional relationship of guanosine triphosphate binding proteins. Curr Top Cell Regul 29:129–216

    PubMed  CAS  Google Scholar 

  • Pizon V, Chardin P, Lerosey I, Olofson B, Tavitian A (1988) Human cDNA rap 1 and rap 2 homologous to the Drosophila gene Dras 3 encode proteins closely related to ras in the “effector” region region. Oncogene 3: 201–204

    PubMed  CAS  Google Scholar 

  • Polakis PG, Weber RF, Nevins B, Didsbury JR, Evans T, Synderman R (1989) Identification of the ral andrac1 gene products, low molecular mass GTP-binding proteins from human platelets. J Biol Chem 264:16383–16389

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P (1988)Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Google Scholar 

  • Popoff M, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Res 18:1291

    Article  PubMed  CAS  Google Scholar 

  • Quilliam LA, Brown JH, Buss JE (1988) A 22-kDa ras-related G-protein is the substrate for an ADP-ribosyltransferase from Clostridium botulinum. FEBS Lett 238: 22–26

    Article  PubMed  CAS  Google Scholar 

  • Rösener S, Chhatwal GS, Aktories K (1987) Botulinum ADP-ribosyltransferase C3 but not botulinum neurotoxins C1 and D ADP-ribosylates low molecular mass GTP-binding proteins. FEBS Lett 224: 38–42

    Article  PubMed  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8: 418–426

    PubMed  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264: 8602–8605

    PubMed  CAS  Google Scholar 

  • Toki C, Oda K, Ikehara Y (1989) Demonstration of GTP-binding proteins and ADP-ribosylated proteins in rat liver golgi fraction. Biochem Biophys Res Commun 164: 333–338

    Article  PubMed  CAS  Google Scholar 

  • Touchot N, Chardin P, Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA 84: 8210–8214

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238: 542–545

    Article  PubMed  CAS  Google Scholar 

  • Tsai SC, Adamik R, Kanaho Y, Hewlett EL, Moss J (1984) Effect of guanyl nucleotides and rhodopsin on ADP-ribosylation of the inhibitory GTP-binding component of adenylate cyclase by pertussis toxin. J Biol Chem 259: 15320–15323

    PubMed  CAS  Google Scholar 

  • Ueda T, Kikuchi A, Ohga N, Yamamoto J, Takai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rho B p20, a ras p21-like GTP-binding protein. J Biol Chem 265: 9373–9380

    PubMed  CAS  Google Scholar 

  • Ui M (1990) Pertussis toxin as a valuable probe for G-protein involvement in signal transducin. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 45–77

    Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β-/γ-actin in arginine 177. J Biol Chem 263: 696–700

    PubMed  CAS  Google Scholar 

  • Van Dop C, Yamanaka G, Steinberg F, Sekura RD, Manclark CR, Stryer L, Bourne HR (1984) ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem 259: 23–26

    PubMed  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyldiphthamide and its hydrolysis products. J Biol Chem 255: 10710–10716

    PubMed  Google Scholar 

  • West RE, Moss J, Vaughan M, Liu T, Liu TY (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430

    PubMed  CAS  Google Scholar 

  • Wick MJ, Iglewski BH (1990) Pseudomonas aeruginosa exotoxin A. In: Moss J, Vaughan M. (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 31–43

    Google Scholar 

  • Wiegers W, Just I, Müller H, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54: 237–245

    PubMed  CAS  Google Scholar 

  • Wieland T, Ulibarri I, Aktories K, Gierschik P, Jakobs KH (1990a) Interaction of small G proteins with photoexcited rhodopsin. FEBS Lett 263:195–198

    Article  PubMed  CAS  Google Scholar 

  • Wieland T, Ulibarri I, Gierschik P, Aktories K, Jakobs KH (1990b) Interaction of recombinant rhoA GTP-binding proteins with photoexcited rhodopsin. FEBS Lett 274:111–114

    Article  PubMed  CAS  Google Scholar 

  • Williamson KC, Smith LA, Moss J, Vaughan M (1990) Guanine nucleotide-dependent ADP-ribosylation of soluble rho catalyzed byClostridium botulinum C3 ADP-ribosyltransferase. J Biol Chem 265: 20807–20812

    PubMed  CAS  Google Scholar 

  • Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248: 67–69

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto J, Kikuchi A, Ueda T, Ohga N, Takai Y (1990) A GTPase-activating protein for rho Bp20, a ras p21-like GTP-binding protein—partial purification, characterization and subcellular distribution in rat brain. Mol Brains Res 8:105–111

    Article  CAS  Google Scholar 

  • Yeramian P, Chardin P, Madaüle P, Tavitian A (1987) Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res 15:1869

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Aktories, K., Mohr, C., Koch, G. (1992). Clostridium botulinum C3 ADP-Ribosyltransferase. In: Aktories, K. (eds) ADP-Ribosylating Toxins. Current Topics in Microbiology and Immunology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76966-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76966-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76968-9

  • Online ISBN: 978-3-642-76966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics