Skip to main content

Forcing the Ocean by Heat and Freshwater Fluxes

  • Conference paper
Energy and Water Cycles in the Climate System

Part of the book series: NATO ASI Series ((ASII,volume 5))

Abstract

The fluxes of momentum, energy, and water through the sea surface constitute the principal coupling between ocean and atmosphere. The momentum flux (wind stress) is a main driving force for oceanic motions, in particular for currents near the surface, along continental margins and in the main thermocline, whereas the fluxes of heat and freshwater drive the slower thermohaline component of the oceanic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgartner A, Reichel E (1975) The World Water Balance. Elsevier 179pp.

    Google Scholar 

  • Behringer D, Regier L, Stommel H (1979). Thermal feedback on wind stress as a contributing cause of the Gulf Stream. J Mar Res 37: 699–709.

    Google Scholar 

  • Bretherton FP (1982) Ocean climate modeling. Progr Oceanogr 11: 93–129.

    Article  Google Scholar 

  • Broecker WS, Peteet DM, Rind D (1985) Does the ocean-atmosphere system have more than one mode of operation? Nature 315: 21–26.

    Article  Google Scholar 

  • Bryden H, Roemmich DH, Church JA (1991) Ocean heat transport across 24 ° N in the Pacific. Deep-Sea Res 38: 297–324.

    Article  Google Scholar 

  • Bryan K, Manabe S, Pacanowski RC (1975) A global ocean-atmosphere climate model. Part II. The oceanic circulation. J Phys Oceanogr 5: 30–46.

    Article  Google Scholar 

  • Bryan K, Spelman MJ (1985) The ocean’s response to a C02-induced warming. J Geophys Res 90: No. C6 11679–11688.

    Article  Google Scholar 

  • Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulation. Nature 323: 301–304.

    Article  Google Scholar 

  • Bryan F (1987) Parameter sensitivity of primitive-equation ocean general circulation models. J Phys Oceanogr 17: 970–985.

    Article  Google Scholar 

  • Carissimo BC, Oort AH, Vonder Haar TH (1985) Estimating the meridional energy transports in the atmosphere and ocean. J Phys Oceanogr 15: 82–91.

    Article  Google Scholar 

  • Coachman LK, Aagaard K (1988) Transports through Bering Strait: Annual and interannual variability. J Geophys Res 93: 15535–15539.

    Article  Google Scholar 

  • Cubasch U, Hasselmann K, Hock H, Maier-Reimer E, Mikolajewicz U, Sauter BD, Sausen R (1992) Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics (submitted).

    Google Scholar 

  • Dorman CE, Bourke RH (1981) Precipitation over the Atlantic Ocean, 30 ° S to 70 ° N. Mon Wea Rev 109: 554–563.

    Article  Google Scholar 

  • Gerdes R, Köberle C, Willebrand J (1991) The influence of numerical advection schemes on the results of ocean general circulation models. Climate Dynamics 5: 211–226.

    Article  Google Scholar 

  • Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91: 5037–5046.

    Article  Google Scholar 

  • Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res 29: 339–359.

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models, Part I. Theory. Tellus 28: 473–485.

    Article  Google Scholar 

  • Hastenrath S (1982) On the meridional heat transport in the world ocean. J Phys Oceanogr 12: 922–927.

    Article  Google Scholar 

  • Hsiung J (1985) Estimates of global oceanic meridional heat transport. J Phys Oceanogr 15: 1405–1413.

    Article  Google Scholar 

  • Isemer HJ, Hasse L (1987) The Bunker climate atlas of the North Atlantic Ocean. Vol. 2. Springer Verlag 252 pp.

    Google Scholar 

  • Isemer HJ, Willebrand J, Hasse L (1989) Fine adjustment of large scale air-sea energy flux parametrization by direct estimate of ocean heat transport. J Climate 2: 1173–1186.

    Article  Google Scholar 

  • Maier-Reimer E, Mikolajewicz U (1989) Experiments with an OGCM on the cause of the Younger Dryas. In: Oceanography 1988 (Eds.: A Ayala-Castanares, W Wooster and A Yanez-Arancibia). UNAM Press Mexico 87–100.

    Google Scholar 

  • Maier-Reimer E, Mikolajewicy U, Hasselmann K (1991) On the sensitivity of the global ocean circulation to changes in the surface heat flux forcing. Max-Planck-Inst f Meteorologie Rep. No. 68 67pp.

    Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Climate 1: 841–866.

    Article  Google Scholar 

  • Marotzke J (1990) Instabilities and multiple equilibria of the thermohaline circulation. Ber Inst MeereskKiel 194: 126pp.

    Google Scholar 

  • Marotzke J (1991) Influence of convective adjustment on the stability of the thermohaline circulation. J Phys Oceanogr 21: 903–907.

    Article  Google Scholar 

  • Marotzke J, Welander P, Willebrand J (1988) Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus 40A: 162–172.

    Google Scholar 

  • Marotzke J, Willebrand J (1991) Multiple equilibria of the global thermohaline circulation. J Phys Oceanogr 21: 1372–1385.

    Article  Google Scholar 

  • Mikolajewicz U, Maier-Reimer E (1990) Internal secular variability in an ocean general circulation model. Climate Dynamics 4: 145–156.

    Article  Google Scholar 

  • Oort AH, Asher SC, Levitus S, Peixoto JP (1989) New estimates of the available potential energy in the world ocean. J Geophys Res 3187–3200.

    Google Scholar 

  • Rooth CGH (1982) Hydrology and ocean circulation. Progr Oceanogr 11: 131–149.

    Article  Google Scholar 

  • Schmitt RW, Bogden PS, Dorman CE (1989) Evaporation minus precipitation and density fluxes for the North Atlantic. J Phys Oceanogr 19: 1208–1221.

    Article  Google Scholar 

  • Stocker TF, Wright DG, Mysak LA (1991) A zonally averaged, coupled ocean-atmosphere model for paleoclimatic studies. J Climate (in press)

    Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13: 224–230.

    Article  Google Scholar 

  • Stommel H (1980) Asymmetry of interoceanic fresh-water and heat fluxes. Proc Natl Acad Sci USA 77: 2377–2381.

    Article  Google Scholar 

  • Warren BA (1983) Why is no deep water formed in the North Pacific? J Mar Res 41: 327–347.

    Article  Google Scholar 

  • Talley LD (1984) Meridional heat transport in the Pacific Ocean. J Phys Oceanogr 14: 231–241.

    Article  Google Scholar 

  • Weaver AJ and E.S. Sarachik (1991) The role of mixed boundary conditions in numerical models of the ocean’s climate. J Phys Oceanogr 21: 1470–1493.

    Article  Google Scholar 

  • Welander P (1986) Thermohaline effects in the ocean circulation and realated simple models. In: Large-scale transport processes in oceans and atmosphere (Eds.: J Willebrand and DLT Anderson). D. Reidel Publ Co Dordrecht 163–200.

    Google Scholar 

  • Wijffels SE, Schmitt RW, Bryden HL, Stigebrandt A (1992) Transport of freshwater by the oceans. J Phys Oceanogr 22: 155–162.

    Article  Google Scholar 

  • Winton M, Sarachik SE (1992) Thermohaline oscillations induced by strong steady forcing of ocean general circulation models. J Phys Oceanogr (submitted)

    Google Scholar 

  • Wüst G (1935) Schichtung und Zirkulation des Atlantischen Ozeans. Die Stratosphäre. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff’Meteor’ 1925–1927. English translation by WJ Emery, 1978, of Vol. VI, Section 1, The Stratosphere of the Atlantic Ocean. Amerind Publishing Co New Delhi 112 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Willebrand, J. (1993). Forcing the Ocean by Heat and Freshwater Fluxes. In: Raschke, E., Jacob, D. (eds) Energy and Water Cycles in the Climate System. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76957-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76957-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76959-7

  • Online ISBN: 978-3-642-76957-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics