Skip to main content

Bacterial Sulfate Reduction: Current Status and Possible Origin

  • Chapter
Early Organic Evolution

Abstract

Recent studies on the dissimilatory sulfate-reducing bacteria should help in evaluating their role(s) in ancient geochemical events. As a group, the bacteria are versatile, varied and genetically diverse, and can thrive under a wide range of physico-chemical and nutritional conditions. Discoveries of hydrocarbonutilizing sulfate reducers, and of organisms that grow above 80 °C, rebut claims that sulfide formation in, for example, oil fields and Mississippi Valley type environments, must of necessity be abiological. In modern anoxic environments, sulfate-reducing bacteria are responsible for a significant, and in some cases the major part of organic remineralization of organic matter.

Other anaerobic bacteria have been studied that require one or more less oxidized sulfur compound (e.g. thiosulfate, sulfite and elemental sulfur) as a terminal electron acceptor. These compounds are also reduced by some sulfate reducers. Based on this information a possible scenario for the evolution of bacterial sulfate reduction is presented which involves the sequential development of sulfur reduction, thiosulfate/sulfite reduction, anaerobic disproportionation of thiosulfate to sulfide and sulfate, and finally sulfate reduction. Comparative biochemical evidence suggests that sulfate reduction may have arisen in the earliest stages of biological evolution.

In this work the term sulfate (sulfur) reduction is reserved for dissimilatory reduction (sometimes called sulfate/ sulfur respiration), where inorganic sulfur is an electron acceptor in energy-yielding reactions, as distinct from assimilatory reduction which supplies reduced sulfur for the synthesis of essential sulfur-containing organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature (London) 327:348–349

    Article  Google Scholar 

  • Baas Becking LGM (1925) Studies on the sulfur bacteria. Ann Bot (London) 39:613–650

    Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as sole energy source. Arch Microbiol 117:209–214

    Article  Google Scholar 

  • Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature (London) 326:891–892

    Article  Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of De sulfovibrìo sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Article  Google Scholar 

  • Barghoorn ES, Nichols RI (1961) Sulphate-reducing bacteria and pyritic sediments in Antarctica. Science 134:190

    Article  Google Scholar 

  • Bastin ES (1926) A hypothesis of bacterial influence in the genesis of certain sulphide ores. J Geol 34:773–792

    Article  Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49: 1057–1061

    Google Scholar 

  • Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112:115–117

    Article  Google Scholar 

  • Broda E (1975) The evolution of bioenergetic processes. Revised reprint. Pergamon, Oxford New York, 231 pp

    Google Scholar 

  • Brysch K, Schneider C, Fuchs G, Widdel F (1987) Litho-autrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274

    Article  Google Scholar 

  • Cameron EM (1982) Sulphate and sulphate reduction in Early Precambrian oceans. Nature (London) 296:145– 148

    Article  Google Scholar 

  • Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters and their implications for the origin of natural gas. Bull Am Assoc Petrol Geol 62:2441–2453

    Google Scholar 

  • Carothers WW, Kharaka YK (1980) Stable carbon isotopes of HCO3” in oil-field waters -implications for the origin of CO2. Geochim Cosmochim Acta 44:323–332

    Article  Google Scholar 

  • Chambers LA (1982) sulfur isotope study of a modern intertidal environment and the interpretation of ancient sulfides. Geochim Cosmochim Acta 46:721–728

    Article  Google Scholar 

  • Chambers LA, Trudinger PA (1975) Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J Bacteriol 123:36–40

    Google Scholar 

  • Chambers LA, Trudinger PA (1979) Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol J 1: 249–293

    Article  Google Scholar 

  • Chambers LA, Trudinger PA, Smith JW, Burns MS (1975) Sulfur isotope fractionation during sulfate reduction by dissimilatory sulfate-reducing bacteria. Can J Microbiol 21:1602–1607

    Article  Google Scholar 

  • Cypionka H, Pfennig N (1986) Growth yields of Desul-fotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143:396–399

    Article  Google Scholar 

  • Fauque GD, Barton LL, LeGall J (1980) Oxidative phos-phorylation linked to dissimilatory reduction of elemental sulfur by Desulfovibrio. In: Sulfur in biology. Ciba Found Symp 72. Excerpta Medica, Amsterdam, pp 71– 86

    Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archae-bacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Mani-loff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore LB, Gupte R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of the prokaryotes. Science 209:457–463

    Article  Google Scholar 

  • Franzmann PD, Skyring GW, Burton HR, Deprez PP (1988) Sulfate reduction rates and some aspects of the limnology of four lakes and a fjord of the Vestfold Hills, Antarctica. In: Ferris JM, Burton HR, Johnstone GW, Bayly IA (eds) Biology of the Vestfold Hills, Antarctica, Kluwer, Dordrecht, pp 25–33

    Chapter  Google Scholar 

  • Goldhaber MB, Kaplan IR (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar Chem 9:95–143

    Article  Google Scholar 

  • Heggie DT, Skyring GW, O’Brien GW, Reimers C, Herczeg A, Moriarty DJW, Burnett WC, Milnes AR (1990) Organic carbon cycling and modern phosphorite formation on the East Australian continental margin: an overview. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development, Geol Soc Spec Publ 52, pp 87–117

    Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5: 191–237

    Article  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sletyr VB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov. sp. nov. a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100ºC. Arch Microbiol 149:95–101

    Article  Google Scholar 

  • Ishimoto M, Koyama J, Omura T, Nagai Y (1954) Biochemical studies on sulfate-reducing bacteria. III. Sulfate reduction by cell suspensions. J Biochem 41:537–546

    Google Scholar 

  • Iversen M, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955

    Article  Google Scholar 

  • Jannasch HW, Huber R, Belin S, Stetter KO (1988 a) Ther motoga neapolitana sp. nov. of the extremely thermophilic genus Thermogota. Arch Microbiol 150: 103–104

    Article  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1988 b) Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydro-thermal vents. Appl Environ Microbiol 54: 1203–1209

    Google Scholar 

  • Jørgensen BB (1977) The sulfur cycle in a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832

    Article  Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc, London, pp 113–131

    Google Scholar 

  • Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle in benthic cyanobacterial mats. Limnol Oceanogr 22:657–666

    Article  Google Scholar 

  • Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulfur isotopes. J Gen Microbiol 34:195–212

    Google Scholar 

  • Kharaka YK, Robinson SW, Law LM, Carothers WW (1984) Hydrogeochemistry of Big Soda Lake, Nevada: an alkaline meromictic desert lake. Geochim Cosmochim Acta 48:823–835

    Article  Google Scholar 

  • King HF (1967) The origins and aims of the Baas Becking Laboratory. Miner Depos 2:142–146

    Article  Google Scholar 

  • Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203– 208

    Article  Google Scholar 

  • Kutznetsova VA, Gorlenko VM (1965) Effect of temperature on the development of microorganisms from flooded strata of the Romashkino oil field. Microbiology 34:274-278 (Engl Transl of Microbiologiya 34:329–334)

    Google Scholar 

  • Laanbroek H, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in fresh-water and marine sediments. Arch Microbiol 128: 330–335

    Article  Google Scholar 

  • Lyons D, Nickless G (1986) The lower oxy-acids of sulphur. In: Nickless G (ed) Inorganic sulphur chemistry. Elsevier, Amsterdam, pp 509–533

    Google Scholar 

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551 -578

    Article  Google Scholar 

  • Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructovorans sp. nov. Arch Microbiol 149:447–450

    Article  Google Scholar 

  • Orr WL (1974) Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation -study of Big Horn Basin Paleozoic oils. Bull Am Assoc Petrol Geol 58:2295–2318

    Google Scholar 

  • Peck HD (1962) The role of adenosine-5’-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desul-furicans. J. Biol Chem 237:198–203

    Google Scholar 

  • Peck HD, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc, London, pp 13–36

    Google Scholar 

  • Perry EC, Monster J, Reimer T (1971) Sulphur isotopes in Swaziland System barites and the evolution of the Earth’s atmosphere. Science 171: 1015–1016

    Article  Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov. a new anaerobic, sulfur-reducing, acetate-oxidising bacterium. Arch Microbiol 110:3–12

    Article  Google Scholar 

  • Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 941–947

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 926–940

    Google Scholar 

  • Postgate JR (1951) Reduction of sulfur compounds by Desulphovibrio de sulphuricarns. J Gen Microbiol 5:725–738

    Google Scholar 

  • Postgate JR (1959) Sulphate reduction by bacteria. Annu Rev Microbiol 13:505–520

    Article  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria. Univ Press, Cambridge, 208 pp

    Google Scholar 

  • Powell TG, Macqueen RW (1984) Precipitation of sulfìde ores and organic matter -sulfate reactions at Pine Point, Canada. Science 224: 63–66

    Article  Google Scholar 

  • Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47:345–352

    Article  Google Scholar 

  • Rees CE (1973) A steady-state model for sulfur isotope fractionation in bacterial reduction reactions. Geochim Cosmochim Acta 37: 1141–1162

    Article  Google Scholar 

  • Rickard DT (1973) Limiting conditions for synsedimentary sulfide ore formation. Econ Geol 68:605–617

    Article  Google Scholar 

  • Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Univ Press, Cambridge, 400 pp

    Google Scholar 

  • Rozanova EP, Khudyakova AI (1974) A new nonsporeforming thermophilic sulfate-reducing bacterium, Desul fovibrio thermophilus nov. spec. Microbiology 43: 1908– 1912 (Engl Transl of Mikrobiologiya 43:1069–1075)

    Google Scholar 

  • Saslawsky AS, Chait SS (1929) The influence of the concentration of sodium chloride on several biochemical processes in the limnan. Zentralbl Bakteriol Parasitkd (Abt 2) 77:18–21

    Google Scholar 

  • Siebenthal CE (1915) Origin of the lead and zinc deposits of the Joplin region. US Geol Surv Bull 606, 283 pp

    Google Scholar 

  • Schidlowski M (1979) Antiquity and evolutionary status of bacterial sulfate reduction. Orig Life 9:299–311

    Article  Google Scholar 

  • Schidlowski M (1987) Evolution of the early sulphur cycle. In: Rodriguez-Clemente R, Tardy Y (eds) Geochemistry and Mineral Formation in the Earth Surface. Consejo Superior de Investigacions Cientificas, Madrid, 29–49

    Google Scholar 

  • Shaposhnikov VV, Koiïdrafeva EN, Federov VD (1960) A new species of green sulphur bacteria. Nature (London) 187:167–168

    Article  Google Scholar 

  • Skyring GW (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol J 5:295–374

    Article  Google Scholar 

  • Skyring GM (1988) Acetate as the main energy substrate for the sulfate-reducing bacteria in Lake Eliza (South Australia) hypersaline sediments. FEMS Microbiol Ecol 53:87–94

    Article  Google Scholar 

  • Skyring GW, Donnelly TH (1982) Precambrian sulfur isotopes and a possible role for sulfìte in the evolution of biological sulfate reduction. Precambrian Res 17:41–61

    Article  Google Scholar 

  • Skyring GW, Chambers LA, Bauld J (1983) Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia. Aust J Mar Freshwater Res 34:359–374

    Article  Google Scholar 

  • Sørensen J, Jørgensen BB, Revsbech NP (1979) A comparison of oxygen, nitrate and sulfate respiration in coastal marine sediments. Microbial Ecol 5: 105–115

    Article  Google Scholar 

  • Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfatereducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11

    Google Scholar 

  • Sorokin Yul (1964) On the primary production and bacterial activities in the Black Sea. J Cons Int Explor Mer 29:41 -60

    Google Scholar 

  • Sorokin Yul (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–466

    Google Scholar 

  • Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425

    Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature (London) 305:309–311

    Article  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824

    Article  Google Scholar 

  • Taylor J, Parkes RJ (1985) Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J Gen Microbiol 131:631–642

    Google Scholar 

  • Temple KL (1964) Syngenesis of sulphide ores: an evaluation of biochemical aspects. Econ Geol 59: 1473–1491

    Article  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Trudinger PA (1981) Origins of sulphide in sediments. BMR J Aust Geol Geophys 6:279–285

    Google Scholar 

  • Trudinger PA, Lambert IB, Skyring GW (1972) Biogenic sulphide ores: a feasibility study. Econ Geol 67: 1114–1127

    Article  Google Scholar 

  • Trudinger PA, Chambers LA, Smith JW (1985) Lowtemperature sulphate reduction: biological versus abiological. Can J Earth Sci 22:1910–1918

    Article  Google Scholar 

  • Trüper HG (1982) Microbiological processes in the sulfur cycle through time. In: Holland HD and Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin Heidelberg New York, pp 5–30

    Chapter  Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc, London, pp 99–112

    Google Scholar 

  • Trüper HG, Speich N, Leyendecker W, Dahl C, Becker P (1989) Dissimilatory and assimilatory sulfate reduction in archaebacteria. In: 9th Int Symp on environmental biogeochemistry, Moscow, USSR, Abstr, p157

    Google Scholar 

  • Turtle JH, Dugan PR, Macmillan CB, Randies CI (1969) Microbial dissimilatory sulfur cycle in acid mine water. J Bacteriol 97: 594–602

    Google Scholar 

  • Vainshtein MB, Matrosov AG, Baskunov VP, Zyakun AM, Ivanov MV (1980) Thiosulfate as an intermediate product of bacterial sulfate reduction. Microbiology 49:672–675 (Engl Transl of Mikrobiologiya 49: 855–858)

    Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfatreduzierender Bakterien. Thesis, Georg-August-Univ, Göttingen, 443 pp

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder JB (ed) Biology of anaerobic organisms. John Wiley & Sons, New York, pp 469–585

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfatereducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgateii gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Wolfe RS, Pfennig N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433

    Google Scholar 

  • ZoBell CE (1957) Ecology of sulfate-reducing bacteria. In: Sulfate-reducing bacteria, their relation to the secondary recovery of oil. Sci Symp, St Bonaventure Coll, NY, pp1–24

    Google Scholar 

  • ZoBell CE, Morita RY (1957) Barophilic bacteria in deep sea sediments. J Bacteriol 73: 563–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trudinger, P.A. (1992). Bacterial Sulfate Reduction: Current Status and Possible Origin. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics