Skip to main content

Archaebacteria: Lipids, Membrane Structures, and Adaptation to Environmental Stresses

  • Conference paper
Life Under Extreme Conditions

Abstract

In the past few years a revolution has occurred in the taxonomy of living organisms. In fact, on the basis of genetic studies and on the acquisition of other general biochemical features, organisms are no longer merely gathered into two groups of eubacteria and eukaryotes, but may be considered to belong to a third line, the archaebacteria (Woese 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Comita PB, Gagosian RB, Pang H, Costello CE (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new extremely thermophilic, deep-sea hydrothermal vent archaebacterium Methanococcus jannaschii. J Biol Chem 259: 15234–15241

    PubMed  CAS  Google Scholar 

  • De Rosa M, Gambacorta A (1986) Lipid biogenesis in archaebacteria. In: Kandler O, Zillig W (eds) Archaebacteria ‘85. Fischer, Stuttgart, pp 278

    Google Scholar 

  • De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27: 153–175

    Article  PubMed  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B (1980a) Regularity of isoprenoid biosynthesis in the ether lipids of archaebacteria. Phytochemistry 19: 791–793

    Article  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Sodano S, Bu’ Lock JD (1980b) Structural regularities in tetraether lipids of Caldariella and their biosynthetic and phyletic implications. Phytochemistry 19: 833–836

    Article  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Sodano S (1982) Incorporation of labelled glycerols into ether lipid in Caldariella acidophila. Phytochemistry 21: 595–599

    Article  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P (1983) Isoprenoid ethers backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta 753: 249–256

    Google Scholar 

  • De Rosa M, Gambacorta A, Gliozzi A (1986a) Structure, biosynthesis and physicochemical properties of archaebacterial lipids. Microbiol Rev 50: 70–80

    PubMed  Google Scholar 

  • De Rosa M, Gambacorta A, Lanzotti V, Trincone A, Harris JE, Grant WD (1986b) A range of ether core lipids from the methanogenic archaebacterium Methanosarcina barkeri. Biochim Biophys Acta 875: 487–492

    Google Scholar 

  • De Rosa M, Gambacorta A, Trincone A, Basso A, Zillig W, Holz I (1987) Lipids of Thermococcus celer, a sulfur-reducing archaebacterium: structure and biosynthesis. Syst Appl Microbiol 9: 1–5

    Article  Google Scholar 

  • De Rosa M, Gambacorta A, Grant WD, Lanzotti V, Nicolaus B (1988) Polar lipids and glycine betaine from haloalkaliphilic archaebacteria. J Gen Microbiol 134: 205–211

    Google Scholar 

  • De Rosa M, Lanzotti V, Nicolaus B, Trincone A, Gambacorta A (1989) Lipids of archaebacteria: structural and biosynthetic aspects. In: Costa MS, Duarte JC, Williams RAD (eds) The microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London, pp 131

    Google Scholar 

  • Ekiel I, Mash D, Smallbone BW, Kates M, Smith ICP (1981) The state of the lipids in the purple membrane of Halobacterium cutirubrum as seen by “P NMR. Biochem Biophys Res Commun 100: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Ekiel I, Sprott GD, Smith ICP (1986) Mevalonic acid is partially synthesized from aminoacids in Halobacterium cutirubrum: a ’’C nuclear magnetic resonance study. J Bacteriol 166: 559–564

    PubMed  CAS  Google Scholar 

  • Ferrante G, Ekiel I, Sprott DJ (1986) Structural characterization of the lipids of Methanococcus voltae including a novel N-acetylglucosamine 1-P diether. J Biol Chem 36: 17062–17066

    Google Scholar 

  • Ferrante G, Ekiel I, Sprott JD (1987) Structures of diether lipids of Methanospirillum hungatei containing novel head groups N,N-dimethylamino and N,N,N-dimethylaminopentane tetrol. Biochim Biophys Acta 921: 281–291

    CAS  Google Scholar 

  • Ferrante G, Ekiel I, Girischandra BP, Sprott DJ (1988a) A novel core lipid isolated from the aceticlastic methanogen Methanothrix concilii GP6. Biochem Biophys Acta 963: 173–182

    CAS  Google Scholar 

  • Ferrante G, Ekiel I, Girischandra BP, Sprott DJ (1988b) Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrix concilii GP6. Biochim Biophys Acta 963: 162–172

    CAS  Google Scholar 

  • Fredrickson HL, Leeuw JW, Tas AC, van der Greef J, Lavos GF, Boon JJ (1989) Fast atom bombardment (tandem) mass spectrometric analysis of intact polar ether lipids extractable from the extremely halophilic archaebacterium Halobacterium cutirubrum. Biomed Mass Spectrom 18: 96–105

    Article  CAS  Google Scholar 

  • Gliozzi A, Paoli G, De Rosa M, Gambacorta A (1983) Effect ofisoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta 735: 234–242

    Article  CAS  Google Scholar 

  • Gliozzi A, Bruno S, Basak TK, De Rosa M, Gambacorta A (1986) Organization and dynamics of bipolar lipids from Sulfolobus solfataricus in bulk phases and in monolayer membranes. In: Kandler O, Zillig W (eds) Archaebacteria’ 85. Fischer, Stuttgart, pp 266

    Google Scholar 

  • Grant WD, Larsen H (1989) Extremely halophilic archaebacteria. In: Staley JT, Bryant MP, Pfennig N, HoltJG (eds) Bergey’s manual of systematic bacteriology, vol 3, Williams and Wilkins, London, pp 2216

    Google Scholar 

  • Gliozzi A, Bruno S, Basak TK, De Rosa M, Gambacorta A (1986) Organization and dynamics of bipolar lipids from Sulfolobus solfataricus in bulk phases and in monolayer membranes. In: Kandler O, Zillig W (eds) Archaebacteria’ 85. Fischer, Stuttgart, pp 266

    Google Scholar 

  • Kakinuma K, Yamagishi M, Fujimoto Y, Ikekawa N, Oshima T (1988) Stereochemistry of the biosynthesis of sn-2,3-O-diphytanyl glycerol, membrane lipid of archaebacterium Halobacterium halobium. J Am Chem Soc 110: 4861–4863

    Article  CAS  Google Scholar 

  • Kamekura M, Kates M (1988) Lipids of halophilic archaebacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol II. CRC Press, Boca Raton, Florida, pp 25

    Google Scholar 

  • Kates M, Kushwaha SC (1978) Biochemistry of the lipids of extremely halophilic bacteria. In: Caplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier North Holland Biomedical Press, Amsterdam, pp 461

    Google Scholar 

  • Koga Y, Ohga M, Nishihara M, Morii H (1987) Distribution of a diphytanyl ether analog of phosphatidylserine and an ethanolamine-containing tetraether lipid methanogenic bacteria. Syst Appl Microbiol 9: 176–182

    Article  CAS  Google Scholar 

  • König H (1988) Archaebacteria. In: Rehm HJ (ed) Biotechnology, vol 6. V erlag Chemie, Basel, pp 697 Kramer JKG, Saver FD, Blackwell BA (1987) Structure of the two new aminophospholipids from Methanobacterium thermoautotrophicum. Biochem J 245: 139–143

    Google Scholar 

  • Kushwaha SC, Kates M, Sprott JD, Smith ICP (1981) Novel polar lipids from the methanogen Methanospirillum hungatei GPI. Biochim Biophys Acta 664: 156–173

    PubMed  CAS  Google Scholar 

  • Kushwaha SC, Juez Perez G, Rodriguez-Valera F, Kates M, Kushner DJ (1982) Survey of lipids of new group of extremely halophilic bacteria from salt ponds in Spain. Can J Microbiol 28: 1365–1373

    Article  CAS  Google Scholar 

  • Langworthy TA (1979) Special features of Thermoplasma. In: Barile MF, Racin R (eds) The mycoplasma. Academic Press, New York, pp 495

    Google Scholar 

  • Kushwaha SC, Kates M, Sprott JD, Smith ICP (1981) Novel polar lipids from the methanogen Methanospirillum hungatei GPI. Biochim Biophys Acta 664: 156–173

    Google Scholar 

  • Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. In: Kandler O, Zillig W (eds) Archaebacteria ‘85. Gustav Fischer, Stuttgart, pp 253

    Google Scholar 

  • Lanzotti V, De Rosa M, Trincone A, Basso A, Gambacorta A, Zillig W (1987) Complex lipids from Desulfurococcus mobilis, a sulfur reducing archaebacterium. Biochim Biophys Acta 922: 95–102

    CAS  Google Scholar 

  • Lanzotti V, Nicolaus B, Trincone A, De Rosa M, Grant WD, Gambacorta A (1989a) A complex lipids with a cyclic phosphate from the archaebacterium Natronococcus occultus. Biochim Biophys Acta 1001: 31–34

    CAS  Google Scholar 

  • Lanzotti V, Trincone A, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989b) Complex lipids of Pyrococcus and AN 1, thermophilic members of archaebacteria belonging to Thermococcales. Biochim Biophys Acta 1004: 44–48

    CAS  Google Scholar 

  • Lanzotti V, Nicolaus B, Trincone A, De Rosa M, Grant WD, Gambacorta A (1989c) An isopranoid ether analogue of phosphatidic acid from a halophilic archaebacteria. Biochim Biophys Acta 1002: 398–400

    CAS  Google Scholar 

  • Luzzati V, Gambacorta A, De Rosa M, Gulik A (1987) Polar lipid of thermophilic prokaryotic organisms chemical and physical structure. In: Engelman DM, Rantez CR, Pollard TD (eds) Annual review of biophysics and biophysical chemistry 16. Annual Review Inc, Palo Alto, CA, p 25

    Google Scholar 

  • Moldoveanu N, Kates M (1988) Biosynthetic studies of the polar lipids of Halobacterium cutirubrum formation of isoprenyl ether intermediates. Biochim Biophys Acta 960: 164–182

    CAS  Google Scholar 

  • Morii H, Nishihara M, Ohga M, Koga Y (1986) A diphytanyl ether analog of phosphatidyl serine from methanogenic bacterium, Methanobrevibacter arboriphilus. J Lipid Res 27: 724–730

    PubMed  CAS  Google Scholar 

  • Nicolaus B, Lanzotti V, Trincone A, De Rosa M, Grant WD, Gambacorta A (1989) Glycine-betaine and polar lipid composition in halophilic archaebacteria in response to growth in different salt concentration. FEMS Microbiol Lett 59: 157–160

    Article  CAS  Google Scholar 

  • Nishihara M, Koga Y (1987) Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J Biochem 101: 997–1009

    PubMed  CAS  Google Scholar 

  • Nishihara M, Morii H, Koga Y (1989) Heptads of polar ether lipids of an archaebacterium Methanobacterium thermoautotrophicum: structure and biosynthetic relationship. Biochemistry 28: 95–102

    Article  CAS  Google Scholar 

  • Paltauf F (1983) Ether lipids in biological and model membranes. In: Mangold HK, Paltauf F (eds )

    Google Scholar 

  • Ether lipids: biochemical and biomedical aspects. Academic Press, New York, pp 309

    Google Scholar 

  • Poulter CD, Aoki T, Daniels L (1988) Biosynthesis of isoprenoid membranes in the methanogenic archaebacterium Methanospirillum hungatei. J Am Chem Soc 110: 2620–2624

    Article  CAS  Google Scholar 

  • Thurl S, Schafer W (1988) Lipids from the sulfur dependent archaebacterium Thermoproteus tenax. Biochim Biophys Acta 961: 233–238

    Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8: 89–99

    Article  Google Scholar 

  • Trincone A, Gambacorta A, De Rosa M, Scolastico C, Sydimov A, Potenza D (1989a) Mechanism of cyclopentane ring formation in tetraether lipids of Sulfolobussolfataricus. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and the potential for biotechnology. Elsevier Applied Science, London, pp 180

    Google Scholar 

  • Trincone A, Lanzotti V, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989b) Comparative lipid composition of aerobically and anaerobically grown Desulfurolobus ambivalens an autotrophic thermophilic archaebacterium. J Gen Microbiol 135: 2751–2757

    CAS  Google Scholar 

  • Taujimoto K, Yorimitsu S, Takahasi T, Ohashi M (1989) Revised structure of a phospholipid obtained from Halobacterium halobium. Chem Commun 668–670

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Rosa, M., Trincone, A., Nicolaus, B., Gambacorta, A. (1991). Archaebacteria: Lipids, Membrane Structures, and Adaptation to Environmental Stresses. In: di Prisco, G. (eds) Life Under Extreme Conditions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76056-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76056-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76058-7

  • Online ISBN: 978-3-642-76056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics