Skip to main content

The Role of Antifreeze Glycopeptides and Peptides in the Freezing Avoidance of Cold-Water Fish

  • Conference paper
Life Under Extreme Conditions

Abstract

The Antarctic and Arctic oceans are perennially at about −1.9 °C, the freezing point of seawater, and ice-covered in their shallow waters (Littlepage 1965). The near-shore waters of the north temperate oceans reach this freezing temperature during the winter seasons. This is well below the freezing point of between −0.5 to −0.9 °C of a typical marine teleost (Black 1951). In the presence of ice, supercooling is impossible, and therefore a 1 °C difference between the freezing point of the fish’s body fluids and the environment would lead to freezing. Freezing or even partial freezing has been shown in all cases to result in death (Scholander et al. 1957). However, many fish living in these freezing environments frequently come into contact with ice (DeVries and Wohlschlag 1969; DeVries 1970, 1971, 1974), yet do not appear to freeze (Hargens 1972). In fact, some use the abundant ice crystal formations as a habitat and spend their entire lives there to forage for food and to escape predators (Andriashev 1970; DeVries and Lin 1977a). Freezing in these fish does not occur unless they are exposed to temperatures below −2.2 ° C in the presence of ice (Scholander et al. 1957; DeVries and Lin 1977a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addadi L, Weiner S (1985) Interactions between acidic protein and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 882: 4110–4114

    Article  Google Scholar 

  • Ahlgren JA, DeVries AL (1984) Comparison of antifreeze glycopeptides from several antarctic fishes. Polar Biol 3: 3–97

    Article  Google Scholar 

  • Ahlgren JA, Cheng CC, Schrag JD, DeVries AL (1988) Freezing avoidance and the distribution of antifreeze glycopeptides in body fluids and tissues of Antarctic fish. J Exp Biol 137: 549–563

    PubMed  CAS  Google Scholar 

  • Ananthanarayanan VS, Hew CL (1977) Structural studies on the freezing point-depressing protein of the winter flounder Pseudopleuronectes americanus. Biochem Biophys Res Commun 74: 685–689

    Article  PubMed  CAS  Google Scholar 

  • Ananthanarayanan VS, Slaughter D, Hew CL (1986) Antifreeze proteins from the ocean pout, Macrozoarces americanus: circular diochroism spectral studies on the native and denatured states. Biochim Biophys Acta 870: 154–159

    Article  CAS  Google Scholar 

  • Andriashev AP (1970) Cryopelagic fishes in the Arctic and Antarctic and their significance in polar ecosystems. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, London, p 297

    Google Scholar 

  • Berman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystal — a study of intracrystalline proteins. Nature 331: 546

    Article  CAS  Google Scholar 

  • Black VS (1951) Some aspects of the physiology of fish. II. Osmotic regulation in teleost fishes. Univ Toronto Stud Biol Ser 59, 71: 53–89

    Google Scholar 

  • Boyd RB, DeVries AL (1983) The seasonal distribution of anionic binding sites in the basement membrane of the kidney glomerulus of the winter flounder Pseudopleuronectes americanus. Cell Tissue Res 234: 271–277

    Article  PubMed  CAS  Google Scholar 

  • Buckley HE (1952) Crystal growth. Wiley, New York, pp 339

    Google Scholar 

  • Butchard A, Whetstone J (1949) The effect of dyes on crystal habits of some oxy-salts. Discuss Faraday Soc 5: 254–261

    Article  Google Scholar 

  • Cheng CC, DeVries AL (1989) Structures of antifreeze peptides from the Antarctic eel pout, Austrolycichthys brachycephalus. Biochim Biophys Acta 997: 55–64

    Article  PubMed  CAS  Google Scholar 

  • DeVries AL (1970) Freezing resistance in Antarctic fishes. In: Holdgate MW (ed) Antarctic ecology, vol I. Academic Press, London, pp 320

    Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172: 152–1155

    Article  Google Scholar 

  • DeVries AL (1974) Survival at freezing temperatures. In: Sargent JS, Mallins DW (eds) Biochemical and biophysical perspectives in marine biology, vol I. Academic Press, London, pp 289

    Google Scholar 

  • DeVries AL (1980) Biological antifreezes and survival in freezing environments. In: Gilles R (ed) Animals and environmental fitness. Pergamon, Oxford, pp 583

    Google Scholar 

  • DeVries AL (1982) Biological antifreeze agents in coldwater fishes. Comp Biochem Physiol A73: 627–640

    Article  Google Scholar 

  • DeVries AL (1984) Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes. Philos Trans R Soc Lond B304: 575–588

    Article  CAS  Google Scholar 

  • DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol 127: 293–303

    Article  PubMed  CAS  Google Scholar 

  • DeVries AL, Lin Y (1977a) The role of glycoprotein antifreezes in the survival of Antarctic fishes. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf, Houston, Texas, pp 439

    Google Scholar 

  • DeVries AL, Lin Y (1977b) Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta 495: 88–392

    Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some antarctic fishes. Science 163: 1074–1075

    Article  Google Scholar 

  • DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depression glycoproteins from Antarctic fishes. J Biol Chem 245: 2901–2913

    PubMed  CAS  Google Scholar 

  • DeVries AL, Vandenheede J, Feeney RE (1971) Primary structure of freezing point-depressing glycoproteins. J Biol Chem 246: 305–308

    PubMed  CAS  Google Scholar 

  • Dobbs GH, DeVries AL (1975a) Renal function in antarctic teleost fishes: serum and urine composition. Mar Biol 29: 59–70

    Article  CAS  Google Scholar 

  • Dobbs GH, DeVries AL (1975b) Aglomerular nephron of Antarctic teleosts: a light electron microscopic study. Tissue Cell 7: 159–170

    Article  PubMed  Google Scholar 

  • Dobbs GH, Lin Y, DeVries AL (1974) Aglomerularism in Antarctic fish. Science 185: 793–794

    Article  PubMed  CAS  Google Scholar 

  • Duman JG, DeVries AL (1972) Freezing behavior of aqueous solutions of glycoproteins from the blood of antarctic fish. Cryobiology 9: 469–472

    Article  PubMed  CAS  Google Scholar 

  • Duman JG, DeVries AL (1975) The role of macromolecular antifreezes in cold water fishes. Comp Biochem Physiol 52A: 93–199

    Article  Google Scholar 

  • Duman JG, DeVries AL (1976) Isolation, characterization and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol 53b: 375–380

    Article  Google Scholar 

  • Eastman JT, DeVries AL (1986) Renal glomerular evolution in Antarctic notothenioid fishes. J Fish Biol 29: 649–662

    Article  Google Scholar 

  • Eastman JT, DeVries AL, Coalson RE, Nordquist RE, Boyd RB (1979) Renal conservation of antifreeze peptide in antarctic eel pout, Rhigophila dearborni. Nature 282: 217–218

    Article  PubMed  CAS  Google Scholar 

  • Feeney RE, Yeh Y (1978) Antifreeze proteins from fish bloods. Adv Protein Chem 32: 191–282

    Article  PubMed  CAS  Google Scholar 

  • Fletcher G L (1977) Circannual cycles of blood plasma freezing point and Na’ and Cl-concentrations in Newfoundland winter flounder (Pseudopleuronectes americanus) correlation with water tem-perature and photoperiod. Can J Zool 55: 789–795

    Article  PubMed  CAS  Google Scholar 

  • Fletcher NH (1970) The chemical physics of ice. Cambridge University Press, Cambridge, pp 111

    Book  Google Scholar 

  • Gordon MS, Amdur BH, Scholander PF (1962) Freezing resistance in some northern fishes. Biol Bull Mar Biol Lab, Woods Hole 122: 52–62

    Google Scholar 

  • Gourlie B, Lin Y, Powers D, DeVries AL, Huang RC (1984) Winter flounder antifreeze protein: evidence for a multigene family. J Biol Chem 259: 14960–14965

    PubMed  CAS  Google Scholar 

  • Hargens AR (1972) Freezing resistance in polar fishes. Science 176: 184–186

    Article  PubMed  CAS  Google Scholar 

  • Hew CL, Joshi S, Wang NC, Kao MH, Ananthanarayanan VS (1985) Structures of shorthorn sculpin antifreeze polypeptides. Eur J Biochem 151: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Hudson AP, DeVries AL, Haschemeyer AEV (1979) Antifreeze glycoprotein biosynthesis in Antarctic fishes. Comp Biochem Physiol 62B: 179–183

    Article  Google Scholar 

  • Karnaky KJ (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am Zool 26: 209–224

    CAS  Google Scholar 

  • Knight CA, DeVries AL (1988) The prevention of ice crystal growth from water by “antifreeze proteins”. In: Wagner PE, Valli G (eds) Atmospheric aerosol and nucleation. Springer, Berlin Heidelberg New York Tokyo, pp 717

    Chapter  Google Scholar 

  • Komatsu SK, DeVries AL, Feeney RE (1970) Studies of the structure of the freezing point-depressing glycoproteins from an antarctic fish. J Biol Chem 245: 2901–2908

    PubMed  Google Scholar 

  • Li XM, Trinh KY, Hew CL, Buettner B, Baenziger J, Davies PL (1985) Structure of an antifreeze polypeptide and its precursor from the ocean pout, Macrozoarces americanus. J Biol Chem 260: 12904–12909

    PubMed  CAS  Google Scholar 

  • Lin Y, Duman JG, DeVries AL (1972) Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish. Biochim Biophys Res Commun 46: 87–92

    Article  CAS  Google Scholar 

  • Gourlie B, Lin Y, Powers D, DeVries AL, Huang RC (1984) Winter flounder antifreeze protein: evidence for a multigene family. J Biol Chem 259: 14960–14965

    PubMed  CAS  Google Scholar 

  • Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE (1978) Antifreeze glycoproteins from the blood of an Antarctic fish. J Biol Chem 253: 5155–5162

    PubMed  CAS  Google Scholar 

  • Ng N, Trinh YK, Hew CL (1986) Structure of an antifreeze polypeptide precursor from the sea raven, Hemitripterus americanus. J Biol Chem 261: 15690–15696

    PubMed  CAS  Google Scholar 

  • O’Grady SM, DeVries AL (1982) Osmotic and ionic regulation in polar fishes. J Exp Mar Biol Ecol 57: 219–228

    Article  Google Scholar 

  • O’Grady SM, Clarke A, DeVries AL (1982a) Characterization of glycoprotein antifreeze biosynthesis in isolated hepatocytes from Pagothenia borchgrevinki. J Exp Zool 220: 179–189

    Article  PubMed  Google Scholar 

  • O’Grady SM, Ellory JC, DeVries AL (1982b) Protein and glycoprotein antifreezes in the intestinal fluid of polar fishes. J Exp Biol 98: 429–438

    PubMed  Google Scholar 

  • O’Grady SM, Ellory JC, DeVries AL (1983) The role of low molecular weight antifreeze glycopeptides in the bile and intestinal fluid of Antarctic fishes. J Exp Biol 104: 149–162

    Google Scholar 

  • Osuga DT, Feeney RE (1978) Antifreeze glycoproteins from Arctic fish. J Biol Chem 253: 5338–5343

    PubMed  CAS  Google Scholar 

  • Petzel D, Reisman H, DeVries AL (1980) Seasonal variation of antifreeze peptide in the winter flounder, Pseudopleuronectes americanus. J Exp Zool 211: 63–69

    Article  CAS  Google Scholar 

  • Potts WTW, Parry G (1964) Osmotic and ionic regulation in animals, vol 19. Pergamon, Oxford, pp 171

    Google Scholar 

  • Raymond JA (1976) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. PhD Thesis, University of California, San Diego

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74: 2589–2593

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Lin Y, DeVries AL (1975) Glycoproteins and protein antifreeze in two Alaskan fishes. J Exp Zool 193: 25–130

    Article  Google Scholar 

  • Raymond JA, Radding W, DeVries AL (1977) Circular dichroism of protein and glycoprotein fish antifreeze. Biopolymers 16: 2575–2578

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Wilson P, DeVries AL (1989) Inhibition of growth of non-basal planes in ice by fish antifreezes. Proc Natl Acad Sci USA 86: 881–885

    Article  PubMed  CAS  Google Scholar 

  • Schneppenheim R, Theede H (1982) Freezing point depressing peptides and glycopeptides from arctic-boreal and antarctic fish. Polar Biol 1: 115–123

    CAS  Google Scholar 

  • Scholander PF, Vandam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Supercooling and osmoregulation in arctic fish. J Cell Comp Physiol 49: 5–24

    Article  CAS  Google Scholar 

  • Schrag JD, Cheng CC, Panico M, Morris HR, DeVries AL (1987) Primary and secondary structure of antifreeze peptides from arctic and antarctic zoarcid fishes. Biochim Biophys Acta 915: 357–370

    Article  PubMed  CAS  Google Scholar 

  • Shier WT, Lin Y, DeVries AL (1972) Structure and mode of action of glycoproteins from an Antarctic fish. Biochim Biophys Acta 263: 406–413

    PubMed  CAS  Google Scholar 

  • Shier WT, Lin Y, DeVries AL (1975) Structure of the carbohydrate of antifreeze glycoproteins from an antarctic fish. FEBS Lett 54: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256: 2022–2026

    PubMed  CAS  Google Scholar 

  • Tomimatsu Y, Scherer J, Yeh Y, Feeney RE (1976) Raman spectra of a solid antifreeze glycoprotein and its liquid and frozen aqueous solutions. J Biol Chem 251: 2290–2298

    PubMed  CAS  Google Scholar 

  • Turner JD, Schrag JD, DeVries AL (1985) Ocular freezing avoidance in antarctic fish. J Exp Biol 118: 121–131

    Google Scholar 

  • Van Voorhies WV, Raymond JA, DeVries AL (1978) Glycoproteins as biological antifreeze agents in the cod Gadus ogac ( Richardson ). Physiol Zool 51: 347–353

    Google Scholar 

  • Yang DSC, Sax M, Chakrabartty A, Hew CL (1988) Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333: 232–237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, C.C., DeVries, A.L. (1991). The Role of Antifreeze Glycopeptides and Peptides in the Freezing Avoidance of Cold-Water Fish. In: di Prisco, G. (eds) Life Under Extreme Conditions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76056-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76056-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76058-7

  • Online ISBN: 978-3-642-76056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics