Skip to main content

Ribonucleases: Diversity and Regulation

  • Conference paper
Post-Transcriptional Control of Gene Expression

Part of the book series: NATO ASI Series ((ASIH,volume 49))

Abstract

The complexity of RNA metabolism has become much more apparent in recent years. First of all, it is now clear that there are many more types of RNA molecules present in cells than the original classes of rRNA, tRNA and mRNA. Secondly, most, if not all, of these RNA molecules are initially synthesized as precursors that must be processed to generate the mature, functional species. In addition, some of these functional RNAs undergo other turnover or modification reactions that further alter their structure. Finally, RNA molecules are ultimately degraded, and these degradative reactions proceed at different rates among classes of RNA molecules and even among members of the same class. These latter findings add an additional level of complexity to RNA metabolism because they imply that regulatory processes may be involved in the differential stability of RNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amitsur M, Morad I and Kaufmann G (1989) In vitro reconstitution of anticodon nuclease from components encoded by phage T4 and Escherichia coli CTr5X. EMBOJ. 8: 2411–2415

    CAS  Google Scholar 

  • Apirion D (1974) The fate of mRNA and rRNA in Escherichia coli. Brookhaven Symp. Biol. 26: 286–306

    CAS  Google Scholar 

  • Bardwell JCA, Regnier P, Chen SM, Nakamura Y, Grunberg-Monago M and Court DL (1989) Autoregulation of RNase III operon by mRNA processing. EMBO J. 8: 3401–3407

    PubMed  CAS  Google Scholar 

  • Bechhofer DH and Zen KH (1989) Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis. J. Bacteriol. 171: 5803–5811

    PubMed  CAS  Google Scholar 

  • Belasco JG and Higgins CF (1989) Mechanisms of mRNA decay in bacteria: A perspective. Gene 72: 15–23

    Article  Google Scholar 

  • Beppu T and Arima K (1969) Induction by mercuric ion of extensive degradation of cellular ribonucleic acid in Escherichia coli. J. Bacteriol. 98: 888–897

    PubMed  CAS  Google Scholar 

  • Bernstein P and Ross J (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. TIBS 14: 373–377

    PubMed  CAS  Google Scholar 

  • Cannistraro VJ and Kenneil D (1989) Purification and characterization of RNase M and mRNA degradation in Escherichia coli. Eur. J. Biochem. 181: 363–370

    Article  PubMed  CAS  Google Scholar 

  • Chen CYA, Beatty JT, Cohen SN and Belasco JG (1988) An intercistronic stem- loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell 52: 609–619

    Article  PubMed  CAS  Google Scholar 

  • Cudny H, Zaniewski R and Deutscher MP (1981) iL SQii RNase D: catalytic properties and substrate specificity. J. Biol. Chem. 256: 5633–5637

    Google Scholar 

  • Deutscher MP (1984) Processing of tRNA in prokaryotes and eukaryotes. Crit. Rev. Biochem. 17: 45–71

    Article  CAS  Google Scholar 

  • Deutscher MP (1985) E. coli RNases: Making sense of alphabet soup. Cell 40: 731–732

    CAS  Google Scholar 

  • Deutscher MP, Marlor CW and Zaniewski R (1985) RNase T is responsible for the end-turnover of tRNA in fL GQli. Proc. Natl. Acad. Sei. U.S.A. 82: 6427–6430

    Google Scholar 

  • Deutscher MP, Marshall GT and Cudny H (1988) RNase PH: A new phosphate- dependent nuclease distinct from polynucleotide Phosphorylase. Proc. Nat. Acad. Sei. USA 85: 4710–4714

    Google Scholar 

  • Deutscher MP (1988) The metabolic role of RNases. TIBS 13: 136–139

    PubMed  CAS  Google Scholar 

  • Donovan WP and Kushner SR (1986) Polynucleotide Phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia COJiK-12. Proc. Natl. Acad. Sei. U.S.A. 83: 120–124

    Google Scholar 

  • Gilson E, Clement JM, Perrin D and Hofnung M (1987) Palindromic units: a case of highly repetitive DNA sequences in bacteria. Trends in Gen. 3: 226–230

    Article  CAS  Google Scholar 

  • Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Ann. Rev. Biochem. 57: 199–233

    Article  PubMed  CAS  Google Scholar 

  • Hartley RW (1989) Barnase and barstar: two small proteins to fold and fit together. TIBS 14: 450–454

    PubMed  CAS  Google Scholar 

  • Hayashi MN and Hayashi M (1985) Cloned DNA sequences that determine mRNA stability of bacteriophage 174 in vivo are functional. Nucleic Acid Res. 13: 5937–5948

    Article  PubMed  CAS  Google Scholar 

  • Ito R and Ohnishi Y (1983) The roles of RNA polymerase and RNase I in stable RNA degradation in fL CQJi carrying the srnB gene. Biochim. Biophys. Acta 739: 27–34

    PubMed  CAS  Google Scholar 

  • King TC, Sirdeskmukh R and Schlessinger D (1986) Nucleolytic processing of RNA transcripts in procaryotes. Microbiol. Rev. 50: 428–451

    Google Scholar 

  • Lennette ET, Meyhack B and Apirion D (1972) A mutation affecting degradation of stable RNA in Escherichia coli. FEBS Lett. 21: 286–288

    Article  CAS  Google Scholar 

  • Lundberg U, Melefors O and von Gabain A (To be published) Purification and characterization of a novel endoribonuclease controlling mRNA stability in coli. EMBOJ.

    Google Scholar 

  • Malter JS (1989) Identification of a AUUUA-specific messenger RNA binding protein. Science 246: 664–666

    Article  PubMed  CAS  Google Scholar 

  • Mullner EW, Neupert B and Kuhn LC (1989) A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58: 373–382

    Article  PubMed  CAS  Google Scholar 

  • Newbury SF, Smith NH and Higgins CF (1987) Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51: 1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Nilsson G, Lundberg U and von Gabain A (1988)]n vivo and in vitro identity of site specific cleavages in the 5 non-coding region of ompA and bla mRNA in Escherichia coli. EMBOJ. 7: 2269–2275.

    Google Scholar 

  • Ohnishi Y and Schlessinger D (1972) Total breakdown of ribosomal and transfer RNA in a mutant of Escherichia coli. Nature New Biol. 238: 228–231

    CAS  Google Scholar 

  • Plunkett III G and Echols H (1989) Retroregulation of the bacteriophage lambda int gene: Limited secondary degradation of the RNase Ill-processed transcript. J. Bacteriol. 171: 588–592

    PubMed  CAS  Google Scholar 

  • Portier C, Dondon L, Grunberg-Manago M and Regnier P (1987) The first step in the functional inactivation of the EfioJi polynucleotide Phosphorylase messenger is a ribonuclease III processing at the 5 end. EMBO J. 6: 2165–2170

    PubMed  CAS  Google Scholar 

  • Shaw G and Kamer R (1986) A conserved AU sequence from the 3 untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667

    Article  PubMed  CAS  Google Scholar 

  • Schedl P, Roberts J and Primakoff P (1976) In vitro processing of E. coli tRNA precursors. Cell 8:581–594 Stevens A and Maupin MK (1987) A 5-3 exoribonuclease of human placental nuclei: purification and substrate specificity. Nucleic Acids Res. 15: 695–708

    Google Scholar 

  • Takata R, Mukai T and Hori K (1987) RNA processing by RNase III is involved in the synthesis of Escherichia coli polynucleotide Phosphorylase. Mol. Gen. Genet. 209: 28–32

    Google Scholar 

  • Tomlins RL and Ordal ZJ (1971) Precursor ribosomal RNA and ribosome accumulation in vivo during recovery of S. typhimurium from thermal injury. J. Bacteriol. 107: 134–142

    PubMed  CAS  Google Scholar 

  • Uzan M, Favre R and Brody E (1988) A nuclease that cuts specifically in the ribosome binding site of some T4 mRNAs. Proc. Natl. Acad. Sei. U.S.A. 85: 8895–8899

    Google Scholar 

  • Zhang J and Deutscher MP (1988a) Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D. J. Bacteriol. 170: 522–527

    PubMed  CAS  Google Scholar 

  • Zhang J and Deutscher MP (1988b) Transfer RNA is a substrate for RNase D in vivo. J. Biol. Chem. 263: 17909–17912

    PubMed  CAS  Google Scholar 

  • Zhang J and Deutscher MP (1988c) Escherichia coli RNase D: sequencing of the rnd structural gene and purification of the overexpressed protein. Nucleic Acids Res. 16: 6265–6278

    Article  PubMed  CAS  Google Scholar 

  • Zhang J and Deutscher MP (1989) Analysis of the upstream region of the E. QQÃœ IDd gene encoding RNase D. J. Biol. Chem. 264: 18228–18233

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deutscher, M.P., Zhang, J. (1990). Ribonucleases: Diversity and Regulation. In: McCarthy, J.E.G., Tuite, M.F. (eds) Post-Transcriptional Control of Gene Expression. NATO ASI Series, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75139-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75139-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75141-7

  • Online ISBN: 978-3-642-75139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics