Skip to main content

The Physiology of Photomorphogenetic Tomato Mutants

  • Conference paper
Phytochrome Properties and Biological Action

Part of the book series: NATO ASI Series ((ASIH,volume 50))

Abstract

Photomorphogenesis of higher plants is a complex process resulting from the co-action of at least 3 different photoreceptors: phytochrome, a blue light (B)/UV-A photoreceptor (cryptochrome) and a UV-B photoreceptor (Mohr, 1986). The existence of multiple photoreceptor types, eg. type I (PI) or light-labile phytochrome and type II (PH) or light-stable phytochrome, adds to the complexity (Furuya, 1989; Tomizawa et al., 1990). The assignment of specific functions to the distinct molecular species of the photoreceptor is therefore being studied with the aid of photomorphogenetic mutants in which certain parts of the morphogenetic pathway are eliminated or altered. The relevance of the changed part in the mutant is directly indicated by its difference in response compared to its isogenic wild type (Kooraneef and Kendrick, 1986). Mutants can be found (isolated) from natural populations or varieties (cultivars) or more efficiently after mutagenic treatment: using e.g. chemicals, irrradiation; somaclonal variation; transposon insertion; transformation; introduction of antisense RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamse P, Kendrick RE, Koornneef M (1988a) Photomorphogenic mutants of higher plants. Photochem Photobiol 48:833–841.

    Article  CAS  Google Scholar 

  • Adamse P, Jaspers PAPM, Bakker JA, Wesselius JC, Heeringa GH, Kendrick RE, Koornneef M (1988b) Photoregulation of a tomato mutant deficient in labile phytochrome. J Plant Physiol 133:436–440.

    Google Scholar 

  • Adamse P, Peters JL, Jaspers PAPM, van Tuinen A, Koornneef M, Kendrick RE (1989) Photocontrol of anthocyanin synthesis in tomato seedlings: A genetic approach. Photochem Photobiol 50:107–111.

    Article  CAS  Google Scholar 

  • Boylan MT, Quail PH (1989) Oat phytochrome is biologically active in transgenic tomatoes. The Plant Cell 1:765–773.

    Article  PubMed  CAS  Google Scholar 

  • Buurmeijer WF, Roelofs TA, Vredenberg WJ (1987) Some aspects of altered structure and function of the photosynthetic apparatus in phytochrome-less mutants of tomato. In: Biggins J (ed) Progress in Photosynthetic Research. Vol. II. Martinus Nijhoff Publ, Dordrecht pp.383.

    Chapter  Google Scholar 

  • Downs RJ, Hendricks SB, Borthwick HA (1957) Photoreversible control of elongation in pinto beans and other plants under normal conditions of growth. Bot Gaz 118:199–208.

    Article  Google Scholar 

  • Furuya M (1989) Molecular properties and biogenesis of phytochrome I and II. Adv Biophys 25:133–167

    Article  PubMed  CAS  Google Scholar 

  • García-Martínez JL, Keith B, Bonner BA, Stafford AE, Rappaport L (1987) Phytochrome regulation of the response to exogenous gibberellins by epicotyls of Vignor sinensis. Plant Physiol 85:212–216

    Article  PubMed  Google Scholar 

  • Häuser B, Pratt LH (1990) Initial characterization of tomato phytochrome genes. Plant Physiol (Suppl) 93:137.

    Google Scholar 

  • Hille J, Koornneef M, Ramanna MS, Zabel P (1989) Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica 42:1–24

    Article  CAS  Google Scholar 

  • Jones, MG (1987) Gibberellins and the procera mutant of tomato. Planta 172:280–284.

    Article  CAS  Google Scholar 

  • Jupe SC, Causton DR, Scott IM (1988) Cellular basis of the effects of gibberellin and the pro gene on stem growth in tomato. Planta 174:106–111.

    Article  CAS  Google Scholar 

  • Ken-Dror S, Horwitz BA (1990) Altered phytochrome regulation of greening in an aurea mutant of tomato. Plant Physiol 92:1004–1008.

    Article  PubMed  CAS  Google Scholar 

  • Kerr EA (1965) Identification of high-pigment, hp, tomatoes in the seedling stage. Can J Plant Sci 45:104–105.

    Article  Google Scholar 

  • Koornneef M, van de Veen JH, Spruit CJP, Karssen CM (1981) Isolation and use of mutants with an altered germination behaviour in Arabidopsis thaliana and tomato. In: Induced mutations — A Tool in Plant Breeding. International Atomic Energy Agency, Vienna, p227.

    Google Scholar 

  • Koornneef M, Cone JW, Dekens RG, O’Herne-Robers EG, Spruit CJP, Kendrick RE (1985) Photomorphogenic responses of long-hypocotyl mutants of tomato. J Plant Physiol 120:153–165.

    CAS  Google Scholar 

  • Koornneef M, Bosma TDG, de Jong M, Ramanna MS, van de Veen JH (1986) Yellow-green (yg-6) is an allele of aurea (au). Tomato Genet Coop Rpt 36:8–9.

    Google Scholar 

  • Koornneef M, Jongsma M, Weide R, Zabel P, Hille J (1987) Transformation of tomato. In: Nevins DJ, Jones RA (eds) Tomato Biotechnology. Alan R Riss Inc., New York, pl69.

    Google Scholar 

  • Koornneef M, Kendrick RE (1986) A genetic approach to photomorphogenesis. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants. Martinus Nijhoff Publ., Dordrecht, p521.

    Google Scholar 

  • Koomneef M, Bosma TDG, Hanhart CJ, van der Veen JH, Zeevart JAD (to be published) The isolation and characterization of gibberellin-deficient mutants in tomato. Theor Appl Genet.

    Google Scholar 

  • Lipucci di Paola M, Collina Grenci F, Caltavuturo L, Tognoni F, Lercari B (1988) A phytochrome mutant from tissue culture of tomato. Adv Hort Sci 2:30–32

    Google Scholar 

  • López-Juez E, Buurmeijer WF, Heeringa GH, Kendrick RE, Wesselius JC, (1990a) Response of light-grown wild-type and long-hypocotyl mutant cucumber plants to end-of-day far-red light. Photochem Photobiol 52:143–150

    Article  Google Scholar 

  • López-Juez E, Nagatani A, Buurmeijer WF, Peters JL, Furuya M, Kendrick RE, Wesselius JC (1990b) Response of light-grown wild-type and aurea-mutant tomato plants to end-of-day far-red light. J Photochem Photobiol B Biology 4:391–405.

    Article  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports 5:81–84.

    Article  CAS  Google Scholar 

  • Mochizuki T, Kamimura S (1985) Photoselective method for selection of hp at the cotyledon stage. Tomato Genet Coop Rpt 35:12–13.

    Google Scholar 

  • Mohr H (1986) Coaction between pigment systems In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants. Martinus Nijhoff Publ., Dordrecht, p547.

    Google Scholar 

  • Oelmüller R, Kendrick RE, Briggs WR (1989) Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea-mutant of tomato. Plant Mol Biol 13:223–232.

    Article  PubMed  Google Scholar 

  • Oelmüller R, Kendrick RE (submitted) Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol Biol.

    Google Scholar 

  • Parks BM, Jones AM, Adamse P, Koornneef M, Kendrick RE, Quail PH (1987) The aurea mutant of tomato is deficient in spectrophotometrically and immunocytochemically detectable phytochrome. Plant Mol Biol 9:97–107.

    Article  CAS  Google Scholar 

  • Peters JL, van Tuinen A, Adamse P, Kendrick RE, Koornneef M (1989) High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J Plant Physiol 134:661–666.

    CAS  Google Scholar 

  • Rick CM (1974) High soluble-solids content In large-fruited tomato lines derived from wild green-fruited species. Higardia 42:493–510.

    Google Scholar 

  • Rick CM, Reeves AF, Zobel RW (1968) Inheritance and linkage relations of four new mutants. Tomato Genet Coop Rpt 18:34–35.

    Google Scholar 

  • Sanders DC, Pharr DM, Konsler TR (1975) Chlorophyll content of a dark-green mutant of ‘Manapal’ tomato. Hort Science 10: 262–264

    CAS  Google Scholar 

  • Sharrock, RA, Parks BM, Koornneef M, Quail PH (1988) Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol Gen Genet 213:9–145.

    Article  CAS  Google Scholar 

  • Soressi GP (1975) New spontaneous or chemically-induced fruit-ripening tomato mutants. Tomato Genet Coop Rpt 25:21–22.

    Google Scholar 

  • Tanksley SD, Mutschier MA (1990) Linkage map of tomato (Lycopersicon esculentum) (2N = 24). In: O’Brian SJ (ed) Genetic Maps. Cold Spring Harbor Laboratory Press, p6.3.

    Google Scholar 

  • Tomizawa K, Nagatani A, Furuya M (1990) Phytochrome genes: Studies using the tools of molecular biology and photomorphogenetic mutants. Photochem Photobiol 52:265–275.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peters, J.L., Wesselius, J.C., Georghiou, K.C., Kendrick, R.E., van Tuinen, A., Koornneef, M. (1991). The Physiology of Photomorphogenetic Tomato Mutants. In: Thomas, B., Johnson, C.B. (eds) Phytochrome Properties and Biological Action. NATO ASI Series, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75130-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75130-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75132-5

  • Online ISBN: 978-3-642-75130-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics