Skip to main content

Neurobiologische Forschungskonzepte für die Pharmakotherapie affektiver Störungen

  • Conference paper
Psychopharmaka heute

Zusammenfassung

Die wichtigsten Anregungen für die Kausalforschung affektiver Erkrankungen kamen aus der Neuropharmakologie. Nach der Entdeckung der antidepressiven Wirkung von Imipramin durch den Schweizer Psychiater Kuhn und der Beobachtung, daß bei 10–20% aller Patienten, die mit Reserpin behandelt werden, depressive Syndrome entstehen, wurde die Noradrenalin (NA)-Mangelhypothese formuliert. Sie basierte auf pharmakologischen Befunden, nach denen das Antidepressivum Imipramin durch Wiederaufnahmehemmung von NA in die präsynaptische Nervenendigung dessen postsynaptische Bioverfügbarkeit erhöht (Abb. 1). Weiter stützt sich diese Hypothese auf die pharmakologische Eigenschaft von Reserpin, das die präsynaptischen NA-Vesikel entspeichert und damit nach längerer Anwendung die noradrenerge Neurotransmission vermindert. Das Konzept der NA-Mangelhypothese war von großem heuristischem Wert und hat verschiedene neurobiologische Richtungen in der Depressionsforschung wesentlich beeinflußt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Asberg M, Bertilsson L. Martensson M, Scalia-Tomba GP, Thoren P, Träskman-Bendz (1984) CSF monoamines in melancholia. Acta Psychiat Scand 69: 201–219

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Brunello N, Barbacchia ML, Chuang DM, Costa E (1982) Down-regulation of beta adrenergic receptors following repeated desipramine injection: Permissive role of serotonergic axons. Neuropharmacology 21: 1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Bylund DB (1988) Subtypes of alpha2-adrenoceptors: Pharmacological and molecular biological evidence converge. TIPS 9: 356–361

    PubMed  CAS  Google Scholar 

  • Casey PJ, Gilman AG (1988) G-protein involvement in receptor-effector coupling. J Biol Chem 263: 2577–2580

    PubMed  CAS  Google Scholar 

  • Collins S, Caron MG, Lefkowitz RJ (1988) Beta2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J Biol Chem 263: 9067–9070

    PubMed  CAS  Google Scholar 

  • Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK (1988) Molecular cloning and expression of the cDNA for the hamster alpha-adrenergic receptor. Proc Natl Acad Sci USA 85: 7159–7163

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 63: 1–55

    Article  Google Scholar 

  • Edman G, Asberg M, Levander S, Schalling D (1986) Skin conductance habituation and cerebrospinal fluid 5-hydroxyindoleacetic acid in suicidal patients. Arch Gen Psychiatry 43: 586–592

    PubMed  CAS  Google Scholar 

  • Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RI (1988) The genomic clone G-21 which ensembles a (3-adrenergic receptor sequence encodes the 5-HT(1A) receptor. Nature 335: 358–360

    Article  PubMed  CAS  Google Scholar 

  • Göthert M (1988) Modulation of transmitter release by presynaptic serotonin receptors. NATO ASI Series 19: 55–68

    Google Scholar 

  • Hadcock JR, Malbon CC (1988) Down-regulation of beta-adrenergic receptors: Agonistinduced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 85: 5021–5025

    Article  PubMed  CAS  Google Scholar 

  • Härfstrand A, Fuxe K, Cintra A et al. (1986) Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci USA 83: 9779–9783

    Article  PubMed  Google Scholar 

  • Holsboer F (1989) Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity. Eur Arch Psychiatry Neurol Sci 238: 302–322

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F, Liebl R, Hofschuster E (1982) Repeated dexamethasone suppression test during depressive illness. Normalization of test result compared with clinical improvement. J Affective Disord 4: 93–101

    Google Scholar 

  • Hu ZY, Bourreau E, Jung-Testas I, Robel P. Baulieu EE (1987) Neurosteroids: Oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA 84: 8215–8219

    Google Scholar 

  • Julius D, MacDermott AB, Axel R, Jessell TM (1988) Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 241: 558–564

    Article  PubMed  CAS  Google Scholar 

  • Kitayama I, Janson AM, Cintra A etal. (1988) Effects of chronic imspramine treatment on glucocorticoid receptor immunoreactivity in various regions of the rat brain. J Neural Transco 73: 191–203

    Article  CAS  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748

    Article  PubMed  CAS  Google Scholar 

  • Kobilka KB, Matsui H, Kobilka TS etal. (1987) Cloning, sequencing and expression of the gene coding for the human platelet alpha-2-adrenergic receptor. Science 238: 650–656

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Caron MG (1988) Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 263: 4993–4996

    Google Scholar 

  • Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Köhler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG, Barnard EA, Seeburg PH (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335: 76–79

    Article  PubMed  CAS  Google Scholar 

  • Manier DH, Gillespie DD, Sulser F (1987) 5,7-Dihydroxytryptamine induced lesions of serotonergic neurons and desipramine induced down-regulation of cortical beta adrenoceptors: a re-evaluation. Biochem Pharmacol 36:3308–3310

    Google Scholar 

  • Mann JJ, Stanley M, McBride A, McEwen BS (1986) Increased serotonin2 and betaadrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43: 954–959

    PubMed  CAS  Google Scholar 

  • Neer EJ, Clapham DE (1988) Roles of G protein subunits in transmembrane signalling. Nature 333: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Potter WZ, Scheinin M, Golden RN (1985) Selective antidepressants and cerebrospinal fluid. Arch Gen Psychiatry 42: 1171–1177

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Bach AW, Wozny M, Taleb O, Dal Toso R, Shih J, Seeburg PH (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 7: 4135–4140

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Gorman CM, Kettenmann H, Seeburg PH, Schofield PR (1988) Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science 242: 1306–1308

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338: 582–585

    Article  PubMed  CAS  Google Scholar 

  • Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an alpha2-adrenergic receptor subtype. Proc Natl Acad Sci USA 85: 6301–6305

    Article  PubMed  CAS  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N et al. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Shimoda K, Yamada N, Ohi K, Tsujimoto T, Takahashi K, Takahashi S (1988) Chronic administration of tricyclic antidepressants suppresses hypothalamo-pituitary-adrenocortical activity in male rats. Psychoneuroendocrinology 13: 431–440

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Supattapone S, Danoff S, Worley PF, Baraban JM (1988) The inositol trisphosphate receptor: A potpourri of second-messenger regulation. Cell Mol Neurobiol 8: 15

    Google Scholar 

  • Steiger A, Benkert O, Wöhrmann S. Steinseifer D, Holsboer F (1989) Effects of trimipramine on sleep-EEG, penile tumescence (NPT) and nocturnal hormonal secretion; a long-term-study in three normal controls. Neuropsychobiology, in press

    Google Scholar 

  • Strasser RH, Benovic JL, Caron MG, Lefkowitz MJ (1986) ß-Agonist-and prostaglandin E1-induced translocation of the ß-adrenergic receptor kinase: Evidence that the kinase may act on multiple adenylate cyclase-coupled receptors. Proc Natl Acad Sci USA 83: 6362–6366

    Google Scholar 

  • Worley PF, Baraban JM, Snyder SH (1987) Beyond receptors: Multiple second-messenger systems in brain. Ann Neurol 21: 217–229

    Google Scholar 

  • Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet 19: 209–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holsboer, F. (1990). Neurobiologische Forschungskonzepte für die Pharmakotherapie affektiver Störungen. In: Herz, A., Hippius, H., Spann, W. (eds) Psychopharmaka heute. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75004-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75004-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51568-5

  • Online ISBN: 978-3-642-75004-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics