Skip to main content

Biological Basis of Thermotherapy (With Special Reference to Oncology)

  • Chapter
Biological Basis of Oncologic Thermotherapy

Part of the book series: Clinical Thermology ((1289))

Abstract

Surgical resection of malignant tissues, radiotherapy, and chemotherapy have developed as the three solid columns for tumor therapy. Despite many improvements and refinements of these therapy modalities, it has proved impossible to develop cures for a great number of individual malignancies, and frequently this is even true of reasonable palliative treatment. Moreover, cancers can frequently develop a high resistance to ionizing radiation or chemotherapeutic drugs. The search for new therapy modalities is necessary in order to overcome such resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adam G, Neumann H, Hinkelbein W, Weth R, Engelhardt R (1983) Metabolic changes in hyperthermia with chemotherapy. In: Engelhardt R (ed) Proceedings of the 13th international congress of chemotherapy. Vienna, pp 37–40, session 12.10, part 273

    Google Scholar 

  • Adwankar MK, Chitnis MP (1984) Effect of hyperthermia alone and in combination with anticancer drugs on the viability of P388 leukemic cells. Tumori 70:231–234

    PubMed  CAS  Google Scholar 

  • Ahnström G, Edvardsson KA (1974) Radiation-induced single-strand breaks in DNA determined by rate of alkaline strand separation and hydroxylapartite chromatography: an alternative to velociy sedimentation. Int J Radiat Biol 26:493–497

    Article  Google Scholar 

  • Alper T (1979) Cellular radiobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Altman K, Gerber GB, Okada S (1970) Radiation-biochemistry. Academic, New York

    Google Scholar 

  • Anderson RL, Minton KW, Li GC, Hahn GM (1981) Temperature induced homeoviscous adaptation of Chinese hamster ovary cells. Biochim Biophys Acta 641:334–348

    Article  PubMed  CAS  Google Scholar 

  • Anderson RL, Ahier RG, Littleton JM (1983) Observations on the cellular effects of ethanol and hyperthermia in vivo. Radiat Res 94:318–325

    Article  PubMed  CAS  Google Scholar 

  • Anderstam B, Harms-Ringdahl M (1988) Increased antineoplastic activity of combined hyperthermic and bleomycin treatments in an adenocarcinoma after glutathione depletion in vivo. Int J Hyperthermia 4:297–306

    Article  PubMed  CAS  Google Scholar 

  • Ando K, Urano M, Kenton L, Kahn J (1987) Effect of ther-mochemotherapy on the development of spontaneous lung metastases. Int J Hyperthermia 3:453–458

    Article  PubMed  CAS  Google Scholar 

  • Anghilari LJ, Crone-Escanye MC, Marchai C, Robert J (1984) Plasma membrane changes during hyperthermia: probable role of ionic modification in tumor cell death. In: Overgaard J (ed) Hyperthermic oncology, vol I, pp 49–52

    Google Scholar 

  • Ashburner J, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17:241–254

    Article  PubMed  CAS  Google Scholar 

  • Atkinson ER (1977) Hyperthermia dose definition. J Bioengineering 1:487–492

    Google Scholar 

  • Auersperg N (1966) Differential heat sensitivity of cells in tissue culture. Nature 209:415–416

    Article  PubMed  CAS  Google Scholar 

  • Barlogie B, Corry PM, Drewinko B (1980) In vitro ther-mohemotherapy of human colon cancer cells with cis-dichlorodiammineplatinum (II) and mitomycin C. Cancer Res. 40:1165–1166

    PubMed  CAS  Google Scholar 

  • Bass H, Moore JL, Coakely WT (1978) Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions. Int J Radiat Biol 33:57–67

    Article  CAS  Google Scholar 

  • Belli JA, Bonte FJ (1963) Influence of temperature on the radiation response of mammalian cells in tissue culture. Radiat Res 18:272–276

    Article  PubMed  CAS  Google Scholar 

  • Belt JA, Thomas JA, Buchsbaum RN, Racker E (1979) Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18:3506–3511

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur E, Riklis E (1979) Enhancement of thermal killing by polyamines, IV. Effects of heat sensitivity and spermine on protein synthesis and ornithine decarboxylase. Cancer Biochem. Biophys. 4:25–31

    PubMed  CAS  Google Scholar 

  • Ben-Hur E, Bronk VB, Elkind MM (1972) Thermally enhanced radiosensitivity of cultured Chinese hamster cells. Nature 238:209–211

    Article  CAS  Google Scholar 

  • Ben-Hur E, Elkind MM, Bronk BV (1974) Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res 58:38–51

    Article  PubMed  CAS  Google Scholar 

  • Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O (1977) Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res 37:3780–3784

    PubMed  CAS  Google Scholar 

  • Bleehen NM, Honess DJ, Morgan JE (1977) Interaction of hyperthermia and the hypoxic cell sensitizer Ro-07–0582 on the EMT 6 mouse tumor. Brit J Cancer 35:299–306

    Article  PubMed  CAS  Google Scholar 

  • Boonstra J, Schamhart DHJ, de Laat SW, van Wijk R (1984) Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells. Cancer Res 44:955–960

    PubMed  CAS  Google Scholar 

  • Borelli MJ, Wong RSL, Dewey WC (1986) A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 CHO cells. J Cell Physiol 126:181–190

    Article  Google Scholar 

  • Bowler K, Duncan CJ, Gladwell RT, Davison TF (1973) Cellular heat injury. Comp Biochem Physiol [A] 45:441–45ß

    Article  CAS  Google Scholar 

  • Braun J, Hahn GM (1975) Enhanced cell killing by bleomycin and 43 °C hyperthermia and the inhibition of recovery from potentially lethal damage. Cancer Res 35:2921–2927

    PubMed  CAS  Google Scholar 

  • Breasted JH (1930) The Edwin Smith surgical papyrus. In: Licht S (ed) Therapeutic heat and cold, 2nd edn. Waverly, pp 196–211

    Google Scholar 

  • Breipohl W, van Beuningen D, Ummels M, Streffer C, Schönfelder B (1983) Effect of hyperthermia on the intestinal mucosa of mice. Verh Anat Ges 77:567–569

    Google Scholar 

  • Britt RH, Lyons BE, Pounds DW, Prionas SD (1983) Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors. Med Instrum 17:172–177

    PubMed  CAS  Google Scholar 

  • Bull JM (1983) Systemic hyperthermia: background and principles. In: Storm FK, Hall GK (eds) Hyperthermia in cancer therapy. Medical, Boston, pp 401–405

    Google Scholar 

  • Burdon RH (1985) Heat shock proteins. In: Overgaard J (ed) Hyperthermic Oncology, vol II. Taylor and Francis, London pp 223–230

    Google Scholar 

  • Burdon RH (1988) Hyperthermic toxicity and the modulation of heat damage to cell protein synthesis in HeLa cells. Recent Results Cancer Res 109:1–8

    PubMed  CAS  Google Scholar 

  • Burdon RH, Cutmore CMM (1982) Human heat shock gene expression and the modulation of plasma membrane Na+/K+ ATPase activity. FEBS Lett 140:45–48

    Article  PubMed  CAS  Google Scholar 

  • Burdon RH, Slater A, McMahon M, Cato ACB (1982) Hyperthermia and heat shock proteins and HeLa cells. Br J Cancer 45:953–963

    Article  PubMed  CAS  Google Scholar 

  • Burdon RH, Kerr SM, Cutmore CMM, Munro J, Gill V (1984) Hyperthermia, Na+K+ ATPase and lactic acid production in some human tumour cells. Br J Cancer 49:437–445

    Article  PubMed  CAS  Google Scholar 

  • Burger F, Engelbrecht FW (1967) Changes in blood composition in experimental heat stroke. S Afr Med J 41:718–721

    PubMed  CAS  Google Scholar 

  • Busch W (1866) Ãœber den Einfluss welche heftigere Erysipeln zuweilig auf organisierte Neubildungen ausüben. Vrh. Natur-hist. Preuss Rhein Westphal 23:28–30

    Google Scholar 

  • Calderwood SK, Hahn GM (1983) Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Acta 756:1–8

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Bump EA, Stevenson MA, van Kersen I, Hahn GM (1985) Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cell stressed with starvation and heat. J Cell Physiol 124:261 – 268

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Moricca G, Rossi-Fanelli A (1967) Selective heat sensitivity of cancer cells (biochemical and clinical studies). Cancer 20:1351–1381

    Article  PubMed  CAS  Google Scholar 

  • Chen TT, Heidelberger C (1969) Quantitative studies on the malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer 4:166–178

    Article  PubMed  CAS  Google Scholar 

  • Chlebowski RT, Block JB, Cundiff D, Dietrich MF (1982) Doxorubicin cytotoxicity enhanced by local anaesthetics in a human melanoma cell line. Cancer Treat Rep 66:121–125

    PubMed  CAS  Google Scholar 

  • Clark EP, Lett JT (1978) Possible mechanisms for hyperthermic inactivation of the rejoining of X-ray induced DNA strand breaks. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the 2nd international symposium, Essen, June 2–4 1977. Urban and Schwarzenberg, Baltimore, pp 144–145

    Google Scholar 

  • Clawson RE, Egorin MJ, Fox BM, Ross LA, Bachur NR (1981) Hyperthermic modification of cyclophosphamide metabolism in rat heptic microsomes and liver slices. Life Sci 28:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Cohen GL, Bauer WR, Barton JK et al. (1979) Binding of cis-and trans-dichlorodiamineplatinum (II) to DNA: evidence for unwinding and shortening of the double helix. Science 203:1014–1016

    Article  PubMed  CAS  Google Scholar 

  • Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am J Med Sci 105:488–511

    Article  Google Scholar 

  • Collins FG, Skibba JL (1979) Effect of hyperthermia and mechlorethamine and hepatic function in isolated perfused liver. Proc Am Assoc Cancer Res 20:125

    Google Scholar 

  • Collins FG, Skibba JL (1983) Altered hepatic functions and microsomal activity in perfused rat liver by hyperthermia combined with alkylating agents. Cancer Biochem Biophys 6:205–211

    PubMed  CAS  Google Scholar 

  • Collins FG, Mitros FA, Skibba JL (1980) Effect of palmitate on hepatic biosynthetic functions at hyperthermic temperatures. Metabolism 29:524–531

    Article  PubMed  CAS  Google Scholar 

  • Connor WG, Gerner EW, Miller RC, Boone MLM (1977) Prospects for hyperthermia in human cancer therapy: part II. Radiology 123:497–503

    PubMed  CAS  Google Scholar 

  • Corry PM, Robinson S, Getz S (1977) Hyperthermic effects on DNA repair mechanisms. Radiology 123:475–482

    PubMed  CAS  Google Scholar 

  • Coss RA, Dewey WC (1988) Heat sensitization of G 1 and S phase cells by procaine HCl. II. Toxicity and probability of dividing following treatment. Int J Hyperthermia 4:687–697

    Article  PubMed  CAS  Google Scholar 

  • Coss RA, Dewey WC, Bamburg JR (1982) Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 42:1059–1071

    PubMed  CAS  Google Scholar 

  • Cress AE, Culver PS, Moon ThE, Gerner EW (1982) Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in cultures. Cancer Res 42:1716–1721

    PubMed  CAS  Google Scholar 

  • Crile G (1962) Selective destruction of cancers after exposure to heat. Ann Surg 156:404–407

    Article  PubMed  Google Scholar 

  • Crile G (1963) The effects of heat and radiation on cancers implanted into the feet of mice. Cancer Res 23:372–380

    PubMed  Google Scholar 

  • Dahl O (1982) Interaction of hyperthermia and doxorubicin on malignant neurogenic rat cell line in (3T4C) in culture. In: Dethlefsen LA, Dewey WC (eds) 3rd international symposium: cancer therapy by hyperthermia, drugs and radiation. NCI Monogr. 61:251–253

    Google Scholar 

  • Dahl O (1983) Hyperthermic potentiation of doxorubicin and 4-epi-doxorubicin in a transplantable neurogenic rat tumor (BT4A) in BD IX rats. Int J Radiat Oncol Biol Phys 9:203–207

    PubMed  CAS  Google Scholar 

  • Dahl O, Mella O (1982) Enhanced effect of combined hyperthermia and chemotherapy (Bleomycin, BCNU) in a neurogenic rat tumor (BT4A) in vivo. Anticancer Res 2:359–364

    PubMed  CAS  Google Scholar 

  • Dahl O, Mella O (1983) Effect of timing and sequence of hyperthermia and cylophosphamide on a neurogenic rat tumor (BT4A) in vivo. Cancer 52:983–987

    Article  PubMed  CAS  Google Scholar 

  • Dahl O, Mella O (1984) Timing and sequence of hyperthermia and drugs. In: Hyperthermic oncology 1984, vol 1. Proceedings of the 4th international symposium on hyperthermic oncology, Aarhus, 2–6 July 1984, pp 425–438

    Google Scholar 

  • Daly JM, Smith G, Frazier H, Dudrick SJ, Copeland, EM (1982) Effects of systemic hyperthermia and intrahepatic infusion with 5-fluorouracil. Cancer 49:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Dennis WH, Yatvin MB (1981) Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol 39:265–271

    Article  CAS  Google Scholar 

  • Dertinger H, Jung H (1970) Molekulare Strahlenbiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • DeSilva V, Tofilon PJ, Gutin PH, Dewey WC, Buckley N, Deen DF (1985) Comparative study of the effects of hyperthermia and BCNU on BCNU-sensitive and BCNU-resistant 9L rat brain tumor cells. Radiat Res 103:363–372

    Article  Google Scholar 

  • Dethlefsen LA, Dewey WC (1982) Third international symposium: cancer therapy by hyperthermia, drugs, and radiation. N C I Monogr 61

    Google Scholar 

  • Dewey WC (1984) Interaction of heat with radiation and chemotherapy. Cancer Res [Suppl] 44:4714s-4720s

    PubMed  CAS  Google Scholar 

  • Dewey WC (1988) Hyperthermic effects studied in vitro. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research. Taylor and Francis, London, pp 954–959

    Google Scholar 

  • Dewey WC, Esch JL (1982) Transient thermal tolerance: cell killing and polymerase activities. Radiat Res 92:611–614

    Article  PubMed  CAS  Google Scholar 

  • Dewey WC, Holohan EV (1984) Hyperthermia — basic biology. In: Rosenblum ML, Wilson CB (eds) Progress in experimental tumor research: brain tumor therapy, vol 28. Karger Medical and Scientific, Basel, pp 198–219

    Google Scholar 

  • Dewey WC, Lix LC (1988) Cell-cycle effects: killing division delay and chromosomal aberrations. In: 5th international symposium on hyperthermic oncology, Kyoto, p 20 (abstracts)

    Google Scholar 

  • Dewey WC, Westra A, Miller HH (1971) Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol 20:505–520

    Article  CAS  Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123:464–477

    Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 497–503

    Google Scholar 

  • Dewey WC, Sapareto SA, Betten DA (1978) Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res 76:48–59

    Article  PubMed  CAS  Google Scholar 

  • Dewey WC, Freeman ML, Raaphorst GP, Clark EP, Wong RSL, Highfield DP, Spiro IJ, Tomasovic SP, Denman DL, Coss RA (1979) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Williams and Wilkins, Baltimore

    Google Scholar 

  • Dewey WC, Freeman ML, Raaphorst GP, Clark EP, Wong RS, Highfield DP, Spiro JS, Tomasovic SP, Denman DL, Coss RA (1980) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 589–623

    Google Scholar 

  • Dewhirst MW, Sim DA, Sapareto S, Connor WG (1984) Importance of minimum tumor temperature in determining early and long-term responses of camine and fehine tumors to heat and radiation. Cancer Res 44:43–50

    PubMed  CAS  Google Scholar 

  • Dickson J, Calderwood SK (1979) Effect of hyperglycemia and hyperthermia on the pH, glycolysis and respiration of the Yoshida sarcoma in vivo. J N C I 63:1371–1381

    CAS  Google Scholar 

  • Dietzel F (1975) Tumor and temperature. Urban and Schwarzenberg, München

    Google Scholar 

  • Dikomey E (1978) Repair of DNA strand breaks in Chinese hamster ovary cells at 37 degrees or at 42 degrees C. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the second international symposium, Essen, June 2–4 1977. Urban and Schwarzenberg, Munich, pp 146–149

    Google Scholar 

  • Dikomey E (1982) Effect of hyperthermia at 42 °C and 45 °C on repair of radiation-induced DNA strand breaks in CHO cells. Int J Radiat Biol 41:603–614

    Article  CAS  Google Scholar 

  • Dikomey E, Franzke J (1986) Three classes of DNA strand breaks induced by X-irradiation and internal β-rays. Int J Radiat Biol 50:893–908

    Article  CAS  Google Scholar 

  • Dikomey E, Jung H (1988) Correlation between polymerase ß activity and thermal radiosensitization in CHO cells. Recent Results Cancer Res 109:35–41

    PubMed  CAS  Google Scholar 

  • Dube DK, Seal G, Loeb LA (1977) Differential heat sensitivity of mammalian DNA polymerase. Biochem Biophys Res Commun 76:483–487

    Article  CAS  Google Scholar 

  • Durand RE (1978) Potentiation of radiation lethality by hyperthermia in a tumor model: effects of sequence, degree and duration of heating. Int J Radiat Oncol Biol Phys 4:401–406

    PubMed  CAS  Google Scholar 

  • Eickhoff J, Dikomey E (1984) Development and decay of acutely induced thermotolerance in CHO cells by different heat shocks at various external pH values. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 91–94

    Google Scholar 

  • Elkind MM, Sutton H, Moses WB (1967) Sublethal and lethal radiation damage. Nature 214:1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Emami B, Mittal BM, Sapareto S (1984) Sequencing of the total course of hyperthermia and radiation. Cancer Res 44(Suppl.):4731s-4732s

    PubMed  CAS  Google Scholar 

  • Engelhardt R (1987) Hyperthermia and drugs. Recent Results Cancer Res 104:136–203

    PubMed  CAS  Google Scholar 

  • Evanochko WT, Ng TC, Lilly MB, Lawson AJ, Corbett TH, Durant JR, Glickson JD (1983) In vivo 31P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, X-radiation, and hyperthermia. Biochemistry 80:334–338

    CAS  Google Scholar 

  • Fajardo LF (1984) Pathological effects of hyperthermia in normal tissues. Cancer Res [Suppl] 44:4826s-4835s

    PubMed  CAS  Google Scholar 

  • Field SB (1978) The response of normal tissue to hyperthermia alone or in combination with X-rays. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson E, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the second international symposium, Essen, June 2–4, 1977. Urban and Schwarzenberg, Baltimore, pp 37–48

    Google Scholar 

  • Field SB, Hume SP (1988) Hyperthermia in animals. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research, vol 2. Taylor and Francis, London, pp 960–965

    Google Scholar 

  • Field SB, Hume S, Law MP, Morris C, Meyers R (1976) Some effects of combined hyperthermia and ionizing radiation on normal tissues. In: Proceedings of the international symposium on radiobiology research needed for the improvement of radiotherapy. International Atomic Energy Commission, Vienna

    Google Scholar 

  • Francesconi R, Mayer M (1979) Heat- and excercise-induced hyperthermia: effects on high-energy phosphate. Aviat. Space Environ Med 50:799–802

    PubMed  CAS  Google Scholar 

  • Frankel HM, Ferrante FL (1966) Effects of pCO2 on appearance of increased lactate during hyperthermia. Am J Physiol 210:1269–1272

    PubMed  CAS  Google Scholar 

  • Frascella D, Frankel HM (1969) Liver pyridine nucleotides, lactate, and pyruvate in hyperthermic rats. Am J Physiol 217:207–209

    PubMed  CAS  Google Scholar 

  • Freeman ML, Dewey WC, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. J N C I 58:1837–1839

    CAS  Google Scholar 

  • George KC, Hirst DG, McNally NJ (1977) Effect of hyperthermia on cytotoxicity of the radiosensitizer Ro-07–0582 in a solid mouse tumor. Br J Cancer 35:372–375

    Article  PubMed  CAS  Google Scholar 

  • George KC, Singh BB (1982) Synergism of chloropromazine and hyperthermia in two mouse solid tumours. Br J Cancer 45:309–313

    Article  PubMed  CAS  Google Scholar 

  • George KC, Singh BB (1985) Hyperthermic response of a mouse fibrosarcoma as modified by phenothiazine drug. Br J Cancer 51:737–738

    Article  PubMed  CAS  Google Scholar 

  • George KC, van Beuningen D, Streffer C (1988) Growth cell proliferation and morphological alterations of mouse mammary carcinoma after exposure to X-rays and hyperthermia. In: Issels RD, Wilmanns W (eds) Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York, pp 113–117 (Recent results cancer res, vol 107)

    Google Scholar 

  • George KC, Streffer C, Pelzer T (1989) Combined effects of X-rays, Ro-03–8799 and hyperthermia on growth, necrosis and cell proliferation in a mouse tumour. Int J Radiat Oncol Biol Phys 16:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Gerner EW (1983) Thermotolerance. In: Storm FK (ed) Hyperthermia and cancer therapy. Hall, Boston, pp 141–162

    Google Scholar 

  • Gerner EW (1985 a) Definition of thermal dose. In: Overgaard J (ed) Hyperthermic oncology vol II. Taylor and Francis, London, pp 245–251

    Google Scholar 

  • Gerner EW (1985 b) Biological isoeffect relationships and dose for temperature induced cytotoxicity. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 253–262

    Google Scholar 

  • Gerner EW, Leith JT (1977) Interaction of hyperthermia with radiation of different linear energy transfer. Int J Radiat Biol 31:238–288

    Article  Google Scholar 

  • Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256:500–502

    Article  PubMed  CAS  Google Scholar 

  • Gerner EW, Connor WG, Boone MLM, Doss JD, Mayer EG, Miller RG (1975) The potential of localized heating as an adjunct to radiation therapy. Radiology 116:433–489

    PubMed  CAS  Google Scholar 

  • Gerner EW, Leith JT, Boone MLM (1976) Mammalian cell survival response following irradiation with 4 MeV X-rays or accelerated helium ions combined with hyperthermia. Radiology 119:715–720

    PubMed  CAS  Google Scholar 

  • Gerner EW, Holmes PW, McCullough JA (1979) Influence of growth state on several thermal response of EMT-6/Az tumor cells in vitro. Cancer Res 39:981–986

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1977) Modification of cell lethality at elevated temperatures: the pH effect. Radiat-Res 70:224–235

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE (1978) Influence of microenvironmental condition on sensitivity to hyperthermia or radiation for cancer therapy. In: Caldwell W, Durand R (eds) Proceedings of the symposium on clinical prospects of hypoxic cell sensitizers and hyperthermia. University of Wisconsin, Madison

    Google Scholar 

  • Gerweck LE (1982) Effect of microenvironmental factors on the response of cells to single and fractionated heat treatments. N C I Monogr 61:19–25

    CAS  Google Scholar 

  • Gerweck LE (1985) Environmental and vascular effect. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 253–262

    Google Scholar 

  • Gerweck LE, Bascomb F (1982) Influence of hypoxia on the development of thermotolerance. Radiat Res 90:356–361

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Delaney TF (1984) Persistence of thermotolerance in slowly proliferating plateau phase cells. Radiat Res 97:365–372

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41:845–849

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39:966–972

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B, Michaels HB (1982) Influence of low pH on the development and decay of 42°C thermotolerance in CHO cells. Int J of Radiat Oncol Biol Phys 8:1935–1941

    Article  CAS  Google Scholar 

  • Gilette EL (1985) Experimental studies of tumor response to hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 9–40

    Google Scholar 

  • Giovanella BC (1983) Thermosensitivity of neoplastic cells in vitro. In: Storm FK (ed) Hyperthermia and cancer therapy. Hall, Boston, pp 55–62

    Google Scholar 

  • Giovanella BC, Morgan AC, Stehlin JA, Williams LJ (1973) Selective lethal effect of supranormal temperatures on mouse sarcoma cells. Cancer Res 33:2568–2578

    PubMed  CAS  Google Scholar 

  • Giovanella BC, Stehlin JS, Morgan AC (1976) Selective lethal effects of supranormal temperatures on human neoplastic cells. Cancer Res 36:3944–3950

    PubMed  CAS  Google Scholar 

  • Goetze O, Schmidt KH (1931) Örtliche homogene Ãœberwärmung gesunder und kranker Gliedmaßen. Deutsche Z Chir 234:623–670

    Article  Google Scholar 

  • Goldin EM, Leeper DB (1981) The effect of low pH on thermotolerance induction using fractionated 45°C hyperthermia. Radiat Res 85:472–479

    Article  PubMed  CAS  Google Scholar 

  • Goss P, Parsons PG (1977) The effect of hyperthermia and melphalan on survival of human fibroblast strains and melanoma cells lines. Cancer Res 37:152–156

    PubMed  CAS  Google Scholar 

  • Guffy MM, Rosenberger JA, Simon J, Burns CP (1982) Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells. Cancer Res 42:3625–3630

    PubMed  CAS  Google Scholar 

  • Guy AW, Chou Ch-K (1983) Physical aspects of localized heating by radiowaves and microwaves. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 279–304

    Google Scholar 

  • Haas GP, Klugo R, Hetzel FW, Barton EE, Cerny IC (1984) The synergistic effect of hyperthermia and chemotherapy on murine transitional cell carcinoma. J Urol 132:828–833

    PubMed  CAS  Google Scholar 

  • Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammlian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34:3117–3123

    PubMed  CAS  Google Scholar 

  • Hahn GM (1978) Interactions of drugs and hyperthermia in vitro and in vivo. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott KR (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 72–79

    Google Scholar 

  • Hahn GM (1979) Potential for therapy of drugs and hyperthermia. Cancer Res 39:2264–2268

    PubMed  CAS  Google Scholar 

  • Hahn GM (1980) Comparison of the malignant potential of 10T1/2 cells and transformants with their survival responses to hyperthermia and to amphotericin B. Cancer Res 40:3763–3767

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Google Scholar 

  • Hahn GM, Shiu EC (1983) Effect of pH and elevated temperature on the cytotoxicity of some chemotherapeutic agents on Chinese hamster cells in vitro. Cancer Res 43:5789–5791

    PubMed  CAS  Google Scholar 

  • Hahn GM, Shiu EC (1986) Adaptation to low pH modifies thermal and thermo-chemical response of mammalian cells. Int J Hyperthermia 2:379–387

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM, Strande DP (1976) Cytotoxic effects of hyperthermia and adriamycin on Chinese hamster cells. J N C I 57:1063–1067

    CAS  Google Scholar 

  • Hahn GM, Braun J, Har-Kedar I (1975) Thermochemotherapy: synergism between hyperthermia (42°-43 °C) and adriamycin (or bleomycin) in mammalian cell inactivation (cancer chemotherapy/cell membranes). Proc Natl Acad Sci USA 72:937–940

    Article  PubMed  CAS  Google Scholar 

  • Hall E (1978) Radiobiology for the radiologist. Harper and Row, Hagestown

    Google Scholar 

  • Hand JW (1987) Heat delivery and thermometry in clinical hyperthermia. In: Streffer C (ed) Hyperthermia and the therapy of malignant tumors. Springer, Berlin Heidelberg New York, pp 1–23 (Recent results cancer research, vol 104)

    Google Scholar 

  • Hand JW, Walker H, Hornsey S, Field SB (1979) Effect of hyperthermia on the mouse testis and its response to X-rays, as assayed by weight loss. Int J Radiat Biol 35:521–528

    Article  CAS  Google Scholar 

  • Harisiadis L, Hall EJ, Kraljevic U, Borek C (1975) Hyperthermia: biological studies at the cellular level. Radiology 117:447–452

    PubMed  CAS  Google Scholar 

  • Harris M (1967) Temperature-resistant variants in clonal populations of pig kidney cells. Exp Cell Res 46:301–314

    Article  PubMed  CAS  Google Scholar 

  • Harris M (1969) Growth and survival of mammalian cells under continuous thermal stress. Exp Cell Res 56:382–386

    Article  PubMed  CAS  Google Scholar 

  • Harris AB, Erickson L, Kending JH, Mingrino S, Goldring S (1962) Observations on selective brain heating in dogs. J Neurosurg 19:514–521

    Article  PubMed  CAS  Google Scholar 

  • Hassanzadeh M, Chapman IV (1983) Thermal enhancement of bleomycin-induced tumor growth delay: the effect of dose fractionation. Eur J Cancer Clin Oncol 19:1517–1519

    Article  PubMed  CAS  Google Scholar 

  • Havemann J (1983 a) Influence of a prior heat treatment on the enhancement by hyperthermia of X-ray-induced inactivation of cultured mammalian cells. Int J Radiat Biol 43:267–280

    Article  Google Scholar 

  • Havemann J (1983 b) Influence of pH and thermotolerance on the enhancement of X-ray induced inactivation of cultured mammalian cells by hyperthermia. Int J Radiat Biol 43:281–289

    Article  Google Scholar 

  • Havemann J, Hahn GM (1981) The role of energy in hyperther-mia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. J Cell Physiol 107:237–241

    Article  Google Scholar 

  • Hayat H, Friedberg I (1986) Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts. Int J Hyperthermia 2:369–378

    Article  PubMed  CAS  Google Scholar 

  • Hazan G, Ben-Hur E, Yerushalmi A (1981) Synergism between hyperthermia and cyclophosphamide in vivo: the effect of dose fractionation. Eur J Cancer 17:681–684

    Article  PubMed  CAS  Google Scholar 

  • Hazan G, Lurie H, Yerushalmi A (1984) Sensitization of combined cis-platinum and cyclophosphamide by local hyperthermia in mice bearing the Lewis lung carcinoma. Oncology 41:68–69

    Article  PubMed  CAS  Google Scholar 

  • Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:187–190

    Article  PubMed  CAS  Google Scholar 

  • Hengstebeck S (1983) Untersuchungen zum Intermedialerstoff-wechsel in der Leber und in einem Adenocarcinom der Maus nach Hyperthermie. Dissertation, Universität-Gesamthochschule Essen

    Google Scholar 

  • Henle KJ (1982) Thermotolerance in the murine jejenum. J N C I 68:1033–1036

    CAS  Google Scholar 

  • Henle KJ (1983) Arrhenius analysis of thermal responses. In: Storm FK (ed) Hyperthermia and cancer therapy. Hall, Boston, pp 47–53

    Google Scholar 

  • Henle KJ, Dethlefsen LA (1980) Time-temperature relationships for heat-induced cell killing of mammalian cells. Ann N Y Acad Sci 335:234–253

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat Res 66:505–518

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1979) Effects of hyperthermia (45 °C) on macromolecular synthesis in Chinese hamster ovary cells. Cancer Res 39:2665–2674

    PubMed  CAS  Google Scholar 

  • Henle KJ, Bitner AF, Dethlefsen LA (1979) Induction of ther-motolerance by multiple heat fractions in Chinese hamster ovary cells. Cancer Res 39:2486–2491

    PubMed  CAS  Google Scholar 

  • Henle KJ, Peck JW, Higashikubo R (1983) Protection against heat-induced cell killing in polyols in vitro Cancer Res 43:1624–1627

    PubMed  CAS  Google Scholar 

  • Henle KJ, Nagle WA, Moss AJ, Herman TS (1984) Cellular ATP content of heated Chinese hamster ovary cells. Radiat Res 97:630–633

    Article  PubMed  CAS  Google Scholar 

  • Henriques FC Jr (1947) Studies on thermal injury. Arch Pathol 43:489–502

    Google Scholar 

  • Herman TS, Cress AE, Sweets C, Gerner EW (1981) Reversal of resistance to methotrexate by hyperthermia in Chinese hamster ovary cells. Cancer Res 41:3840–3843

    PubMed  CAS  Google Scholar 

  • Herman TS, Sweets CC, White DM, Gerner EW (1982) Effect of rate of heating on lethality due to hyperthermia and selected chemotherapeutic drugs. J N C I 68:487–492

    CAS  Google Scholar 

  • Hill SA, Denekamp J (1979) The response of six mouse tumours to heat and X-rays: Implications for therapy. Brit J Radiol 52:209–218

    Article  PubMed  CAS  Google Scholar 

  • Hinkelbein W, Menger D, Birmelin M, Engelhardt R (1984) The influence of whole-body hyperthermia on myelotoxicity of doxorubicin and irradiation in rats. In: Proceedings of the 4th international symposium on hyperthermic oncology, vol 1. Aarhus, 2–6 July 1984, pp 281–283

    Google Scholar 

  • Hiramoto R, Ghanta VK, Lilly MB (1984) Reduction of tumor burden in a murine osteosarcoma following hyperthermia combined with cyclophosphamide. Cancer Res 44: 1405–1408

    PubMed  CAS  Google Scholar 

  • Holohan EV, Highfield DP, Dewey WC (1982) Induction during G of heat radiosensitization in Chinese hamster ovary cells following single and fractionated heat doses. NCI Monogr 61:123–125

    Google Scholar 

  • Holohan EV, Highfield DP, Holohan PK, Dewey WC (1984) Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance. Radiat Res 97:108–131

    Article  Google Scholar 

  • Honess DJ, Bleehen NM (1982) Sensitivity of normal mouse marrow and RIF-1 tumor to hyperthermia combined with cyclophosphamide or BCNU: a lack of therapeutic gain. Br J Cancer 46:236–248

    Article  PubMed  CAS  Google Scholar 

  • Hones DJ, Bleehen NM (1985) Potentiation of melphalan by systemic hyperthermia in mice: therapeutic gain for mouse lung microtumours. Int J Hyperthermia 1:57–68

    Article  Google Scholar 

  • Honesss DJ, Donaldson J, Workman P, Bleehen NM (1985) The effect of systematic hyperthermia on melphalan pharmacokinetics in mice. Br J Cancer 51:77–84

    Article  Google Scholar 

  • Hume SP (1985) Experimental studies of normal tissue response to hyperthermia given alone or combined with radiation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 53–70

    Google Scholar 

  • Hume SP, Marigold JCL (1980) Transient, heat induced, thermal resistance in the small intestine of mouse. Radiat Res 82:526–535

    Article  PubMed  CAS  Google Scholar 

  • Hume SP, Myers R (1984) An unexpected effect of hyperthermia in the expression of X-ray damage in mouse skin. Radiat Res 97:186–199

    Article  PubMed  CAS  Google Scholar 

  • Hume SP, Rogers MA, Field SB (1978) Two qualitatively different effects of hyperthermia on acid phosphatase staining in mouse spleen, dependent on the severity of the treatment. Int J Radiat Biol 34:401–409

    Article  CAS  Google Scholar 

  • Hume SP, Marigold JCL, Field SB (1979) The effects of local hyperthermia on the small intestine of mouse. Br J Radiol 52:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hume SP, Marigold JC, Michalowski A (1983) The effect of local hyperthermia on nonproliferative, compared with proliferative, epithelial cells of the mouse intestinal mucosa. Radiat Res 94:252–262

    Article  PubMed  CAS  Google Scholar 

  • Hume SP, Marigold JCA, Manjil LG (1988) Thermotolerance in preirradiated intestine and its influence on time-temperature relationships. Radiat Res 113:375–387

    Article  PubMed  CAS  Google Scholar 

  • Isbruch Ch (1986) Untersuchungen zum Glukosestoffwechsel menschlicher Melanomzellen in vitro nach Hyperthermie, Bestrahlung und Glukosegabe. Dissertation, Universität-Gesamthochschule Essen

    Google Scholar 

  • Issa M (1985) Hyperthermie am Dünndarm der Maus. Eine elektronenmikroskopische Untersuchung. Dissertation, Essen.

    Google Scholar 

  • Jackson DJ, Dickson JA (1979) Combination of hyperthermia (42 °C) and hyperglycemia in the treatment of the MC7 sarcoma. Br J Cancer 40:306

    Google Scholar 

  • Jähde E, Rajewsky MF (1982) Sensitization of clonogenic malignant cells to hyperthermia by glucose-mediated, tumour-selective pH reduction. J Cancer Res Clin Oncol 104:23–30

    Article  PubMed  Google Scholar 

  • Jain RK (1983) Bioheat transfer: mathematical models of thermal systems. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston pp 9–46

    Google Scholar 

  • Johnson HA, Pavelec M (1973) Thermal enhancement of thio-TEPA cytotoxicity. J N C I 50:903–908

    CAS  Google Scholar 

  • Johnson FH, Eyring H, Polisar MJ (1954) The kinetic basis of molecular biology. Wiley, New York

    Google Scholar 

  • Jorritsma JBM, Konings AWT (1983) Inhibition of radiation-induced strand breaks by hyperthermia and its relationship to cell survival after hyperthermia alone. Int J Radiat Biol 43:505–516

    Article  CAS  Google Scholar 

  • Jorritsma JBM, Konings AWT (1984) The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation. Radiat Res 98:198–208

    Article  PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Konings AWT (1986) DNA lesions in hyperthermic cell killing: effects of thermotolerance, procaine and erythritol. Radiat Res 106:89–97

    Article  PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Kampinga HH, Konings AWT (1984) Role of DNA polymerase in the mechanisms of damage by heat and heat plus radiation in mammalian cells. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 61–64

    Google Scholar 

  • Jorritsma JBM, Kampinga HH, Saf AHJ, Konings AWT (1985) Strand break repair, DNA polymerase and heat radiosensitization in thermotolerant cells. Int J Hyperthermia 1:131–145

    Article  PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Burgman P, Kampinga HH, Konings AWT (1986) DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments. Radiat Res 105:307–319

    Article  PubMed  CAS  Google Scholar 

  • Joshi DS, Barendsen GW (1984) Hyperthermic modification of drug effectiveness for reproductive death of cultured mammalian cells. Indian J Exp Biol 22:251–254

    PubMed  CAS  Google Scholar 

  • Joshi DS, Jung H (1979) Thermotolerance and sensitization induced in CHO cells by fractionated hyperthermic treatments at 38°-45°C. Eur J Cancer 15:345–350

    Article  PubMed  CAS  Google Scholar 

  • Jung H (1982) Interaction of thermotolerance and thermosen-sitization induced in CHO cells by combined hyperthermic treatments at 40° and 43°C. Radiat Res 91:433–446

    Article  PubMed  CAS  Google Scholar 

  • Jung H (1986) A generalized concept for cell killing by heat. Radiat Res 106:56–72

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Dikomey E (1988) Some basic effects in cellular ther-mobiology. Rec Results Cancer Res 107:104–112

    CAS  Google Scholar 

  • Jung H, Kölling H (1980) Induction of thermotolerance and sensitization in CHO cells by combined hyperthermic treatments at 40° and 43°C. Eur J Cancer 16:1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Dikomey E, Zywitz F (1986) Ausmaß und zeitliche Entwicklung der Thermotoleranz und deren Einfluß auf die Strahlenempfindlichkeit von soliden Transplantationstumoren. In: Streffer C, Herbst M, Schwabe H (eds) Lokale Hyperthermie. Deutscher Ärzte Verlag, Köln, pp 23–38

    Google Scholar 

  • Kachani ZFC, Sabin AB (1969) Reproductive capacity and viability at higher temperatures of various transformed hamster cell lines. J N C I 43:469–480

    CAS  Google Scholar 

  • Kal HB, Hahn GM (1976) Kinetic responses of murine sarcoma cells to radiation and hyperthermia in vivo and in vitro. Cancer Res 36:1923–1929

    PubMed  CAS  Google Scholar 

  • Kal HB, Hatfield M, Hahn GM (1975) Cell cycle progression of murine sarcoma cells after X-irradiation or heat shock. Radiology 117:215–217

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Jorritsma JBM, Konings AWT (1985) Heat-induced alterations in DNA polymerase activity of HeLa cells and of isolated nuclei. Relation to cell survival. Int J Radiat Biol 47:29–40

    Article  CAS  Google Scholar 

  • Kampinga HH, Luppes JG, Konings AWT (1987) Heat-induced nuclear protein binding and its relation to thermal cytotoxicity. Int J Hyperthermia 3:459–465

    Article  PubMed  CAS  Google Scholar 

  • Kano E, Furukawa M, Yoshikawa S, Tsubouchi S, Kondo T, Sugahara T (1984) Hyperthermic chemopotentiation and chemical thermosensitisation. In: Hyperthermic oncology 1984, vol 1, summary papers. Proceedings of the 4th international symposium on hyperthermic oncology, Aarhus, 2–6 July 1984, pp 437–440

    Google Scholar 

  • Kapp DA, Hahn GM (1979) Thermosensitization by sulfhydryl compounds of exponentially growing Chinese hamster cells. Cancer Res 39:4630–4635

    PubMed  CAS  Google Scholar 

  • Kase K, Hahn GM (1975) Differential heat response of normal and transformed human cells in tissue culture. Nature 255:228–230

    Article  PubMed  CAS  Google Scholar 

  • Kellerer AM, Rossi HH (1971) RBE and the primary mechanism of radiation action. Radiat Res 47:15–34

    Article  PubMed  CAS  Google Scholar 

  • Kiefer J, Kraft-Weyrather W, Hlawica M (1976) Cellular radiation effects and hyperthermia influence of exposure temperature on survival of diploid yeast irradiated under oxygenated and hypoxic conditions. Int J Radiat Biol 30:293–300

    Article  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975 a) The radiosensitization of hypoxic tumor cells by hyperthermia. Radiology 114:727–728

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975 b) Enhanced killing of hypoxic tumor cells by hyperthermia. Br J Radiol 48:872–874

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1976) The enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia. Radiat Res 66:337–345

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1978) Selective potentiation of hyperthermia killing of hypoxic cells by 5-thin-D-glucose. Cancer Res 38:2935–2938

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW, Ensign NA (1980) Selective killing of glucose and oxygen-deprived HeLa cells by hyperthermia. Cancer Res 40:3459–3462

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Alfieri A, Young CW (1984) Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 44:102–106

    PubMed  CAS  Google Scholar 

  • Klein ME, Frayer K, Bachur NR (1977) Hyperthermic enhancement of chemotherapeutic agents in L1210 leukemia. Bood 505:223

    Google Scholar 

  • Konings AWT (1987) Effects of heat and radiation on mammalian cells. Radiat Physiol Chem 30:339–349

    CAS  Google Scholar 

  • Konings AWT, Penninga P (1983) Role of reduced glutathione in cellular heat sensitivity and thermotolerance. Strahlentherapie 159:377–378

    Google Scholar 

  • Konings AWT, Penninga P (1984) Role of reduced glutathione protein thiols, and pentose phosphate pathway in heat sensitivity and thermotolerance. In: Overgaard J (ed) Proceedings of the 4th international symposium on hyperthermia oncology, 2–6 July, Aarhus. Taylor and Francis, London, pp 115–118

    Google Scholar 

  • Konings AWT, Penninga P (1985) On the importance of the level of glutathione and the activity of the pentose phosphate pathway in heat sensitivity and thermotolerance. Int J Radiat Biol 48:409–422

    Article  CAS  Google Scholar 

  • Konings AWT, Ruifrok ACC (1985) Role of membrane lipids and membrane fluidity and thermotolerance of mammalian cells. Radiat Res 102:86–98

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Nishimura R, Takai S, Umeda M (1979) Effect of hyperthermia on DNA single-strand breaks induced by bleomycin in HeLa cells. Jpn J Cancer Res 70:681–685

    CAS  Google Scholar 

  • Kura Sh, Antoku Sh (1985) Time-lapse photographic studies of heated HeLa cells. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Nippon Hoshasen Kiki Kogyokai, Tokyo, pp 192–193

    Google Scholar 

  • Lambert RA (1912) Demonstration of the greater susceptibility to heat of sarcoma cells. JAMA 59:2147–2148

    Google Scholar 

  • Landry J, Chretien P (1983) Relationship between hyperthermia induced heat shock proteins and thermotolerance in Morris hepatoma cells. Can J Biochem Cell Biol 61:428–437

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Marceau N (1978) Rate-limiting events in hyperthermic cells killing. Radiat Res 75:573–578

    Article  PubMed  CAS  Google Scholar 

  • Lange I, Zänker KS, Siewert JR, Bliimel G, Eisler K, Kolb E (1984) The effect of whole body hyperthermia on 5-fluorouracil pharmakokinetics in vivo and clonogenicity of mammalian colon cancer cells. Anticancer Res 4:27–32

    PubMed  CAS  Google Scholar 

  • Langendorff H, Langendorff M (1943) Ãœber die Wirkung einer mit Ultrakurzwelle kombinierte Röntgenbehandlung auf das Ehrlich-Karzinom der Maus. Strahlentherapie 72:211–219

    Google Scholar 

  • Langer M, Weidenmaier W, Röttinger EM (1982) Increased cytotoxicity of misonidazole by pH reduction and 41 °C hyperthermia in Chinese hamster cells. Strahlentherapie 158:688–691

    PubMed  CAS  Google Scholar 

  • Laszlo A (1988) Evidence for two states of thermotolerance in mammalian cells. Int J Hyperthermia 4:513–526

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG (1982) Long-term thermal sensitivity of previously irradiated skin. Br J Radiol 55:913–915

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1978) The response of the mouse ear to heat applied alone or combined with X-rays. Br J Radiol 51:132–138

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1979) The effect of prior heat treatment on the thermal enhancement of radiation damage in the mouse ear. Br J Radiol 52:315–321

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Somaia S (1987) Thermotolerance induced by fractionated hyperthermia: dependence on the interval between fractions. Int J Hyperthermia 3:433–439

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Ryn KH, Kang MS, Song CW (1986) Effect of hyperthermia on the lactic acid and beta-hydroxybutyric acid content in tumours. Int J Hyperthermia 2:213–222

    Article  PubMed  CAS  Google Scholar 

  • Leeper DB (1985) Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 9–40

    Google Scholar 

  • Leith JT, Miller RC, Gerner EW, Brone MLM (1977) Hyperthermic potentiation. Biological aspects and applications to radiation therapy. Cancer 39:766–779

    Article  PubMed  CAS  Google Scholar 

  • Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92:433–438

    Article  PubMed  CAS  Google Scholar 

  • Lepock JR, Massicotte-Nolan P, Ruled GS, Kruuv J (1981) Lack of correlation between hyperthermic cell killing, thermotolerance, and membrane lipid fluidity. Radiation Res 87:300–313

    Article  PubMed  CAS  Google Scholar 

  • Lepock JR, Cheng KH, Al-Qysi H, Kruüv J (1983) Ther-motropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol 61:421–427

    Article  PubMed  CAS  Google Scholar 

  • Levin W, Blair RM (1978) Clinical experience with combined whole-body hyperthermia and radiation. In: Streffer C, van Beuningen D, Dietzel F, Röttinger F et al. (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 322–325

    Google Scholar 

  • Li GC (1984) Thermal biology and physiology in clinical hyperthermia: current status and future needs. Cancer Res [Suppl] 44:4886s-4893s

    CAS  Google Scholar 

  • Li GC, Hahn GM (1978) Ethanol-induced tolerance to heat and to adriamycin. Nature 274:699–701

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Hahn GM (1980 a) A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res 40:4501–4508

    PubMed  CAS  Google Scholar 

  • Li GC, Hahn GM (1980b) Adaptation to different growth temperatures modifies some mammalian cell survival responses. Exp Cell Res 128:475–485

    Article  PubMed  CAS  Google Scholar 

  • Li DJ, Hahn GM (1984) Responses of RIF tumors to heat and drugs: dependence on tumor size. Cancer Treat Rep 68:1149–1151

    PubMed  CAS  Google Scholar 

  • Li GC, Shiu EC, Hahn GM (1980) Similarities in cellular inactivation by hyperthermia or by ethanol. Radiat Res 82:257–268

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Petersen NS, MitchellHK (1982 a) Induced thermal tolerance and heat shock protein synthesis in Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys 8:63–67

    PubMed  CAS  Google Scholar 

  • Li GC, Fisher GA, Hahn GM (1982b) Induction of thermotolerance and evidence for a well-defined thermotropic cooperative process. Radiat Res 89:361–368

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Shrieve DC, Werb A (1982 c) Correlations between synthesis of heat-shock proteins and development of tolerance to heat and to Adriamycin and Chinese hamster fibroblasts: heat shock and other inducers. In: Schlesinger MJ, Ashburner J, Tissieres K (eds) Heat shock from bacteria to man. Cold Spring Habor, New York

    Google Scholar 

  • Li DJ, Zhou SL, Qui SL, Qiao SJ (1987) Thermodamage, ther-mosensitivity and thermotolerance of normal swine oesophagus. Int J Hyperthermia 3:143–151

    Article  PubMed  CAS  Google Scholar 

  • Li DJ, Qui SL, Zhou SL, Liu HL (1988) Acute heat injury to the normal swine rectum. Int J Hyperthermia 4:191–201

    Article  PubMed  CAS  Google Scholar 

  • Lilly MB, Katholo ChR, Ng TC (1985) Direct relationship between high-energy phosphate content and blood flow in thermally treated murine tumors. J N C I 75:885–889

    CAS  Google Scholar 

  • Lin PS, Turi A, Kwock L, Lu RC (1982) Hyperthermia effect on microtubule organization. NCI Monogr 61:57–60

    Google Scholar 

  • Lin PS, Cariani PA, Jones M, Kahn PC (1983) Work in progress: the effect of heat on bleomycin cytotoxicity in vitro and on the accumulation of co-bleomycin in heat-treated rat tumors. Radiology 146:213–217

    PubMed  CAS  Google Scholar 

  • Lokshina AM, Song CW, Rhee JG, Levitt SH (1985) Effect of fractionated heating on the blood flow in normal tissues. Int J Hyperthermia 1:117–129

    Article  PubMed  CAS  Google Scholar 

  • Longo FW, Tomashefsky P, Rivin BD, Tannenbaum M (1983) Intraction of ultrasonic hyperthermia with two alkylating agents in a murine bladder tumor. Cancer Res 43: 3231–3235

    PubMed  CAS  Google Scholar 

  • Lorenz M, Biwer E, Habs M, Schmähl D (1984) Wirkung der lokalen moderaten Hyperthermie in Kombination mit einer Chemotherapie durch N-nitrose-l,3-bis-(2-chloroethyl)-harnstoff (BCNU) auf das in das Colon descendens der Ratte transplantierte Yoshida-Sarkom. 2. Mitteilung: Monochemot-herapie in Kombination mit nachfolgender Hyperthermie in unterschiedlichen Zeitintervallen. Langenbecks Arch. Chir 362:253–261

    Article  PubMed  CAS  Google Scholar 

  • Loshek DD, Orr JS, Solomonidis E (1977 a) Interaction of hyperthermia and radiation: the survival surface. Br J Radiol 50:893–901

    Article  PubMed  CAS  Google Scholar 

  • Loshek DD, Orr JS, Solomonidis E (1977 b) Interaction of hyperthermia and radiation: temperature coefficient of interaction. Br J Radiol 50:902–907

    Article  PubMed  CAS  Google Scholar 

  • Loshek DD, Orr JS, Solomonidis E (1981) Interaction of hyperthermia and radiation: radiation quality. Br J Radiol 54:40–47

    Article  PubMed  CAS  Google Scholar 

  • Loven DP, Leeper DB, Oberley LW (1985) Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide. Cancer Res 45:3029–3033

    PubMed  CAS  Google Scholar 

  • Lücke-Huhle C, Dertinger H (1977) Kinetic response of an in vitro tumor model (V99 spheroids) to 42°C hyperthermia. Eur J Cancer 13:23–28

    Article  PubMed  Google Scholar 

  • Lunec J, Cresswell SR (1983) Heat-induced thermotolerance expressed in the energy metabolism of mammalian cells. Radiat Res 93:588–597

    Article  PubMed  CAS  Google Scholar 

  • Lunec J, Hesslewood JP, Parker R, Leaper S (1981) Hyperthermic enhancement of radiation cell killing in HeLa S3 cells and its effect on the production and repair of DNA strand breaks. Radiat Res 85:116–125

    Article  PubMed  CAS  Google Scholar 

  • Lyons BE, Obana WG, Borcich JK, Kleinman R, Singh D, Britt RH (1986) Chronic histological effects of ultrasonic hyperthermia on normal feline brain tissue. Radiat Res 106:234–251

    Article  PubMed  CAS  Google Scholar 

  • Magin RL, Weinstein JN (1982) Delivery of drugs in temperature-sensitive liposomes. In: Gregoriadia C, Senior, Trouet L (eds) Targeting of drugs. Plenum, New York, pp 203–221

    Google Scholar 

  • Magin RL, Siki BI, Cysyk RL (1979) Enhancement of bleomycin activity against Lewis lung tumors in mice by local hyperthermia. Cancer Res 39:3792–3795

    PubMed  CAS  Google Scholar 

  • Magin RL, Cysyk RL, Litterst CL (1980) Distribution of adriamycin in mice under conditions of local hyperthermia which improve systemic drug therapy. Cancer Treat Rep 64:203–210

    PubMed  CAS  Google Scholar 

  • Magun BE, Fennie ChW (1981) Effects of hyperthermia on binding, internalization, and degradation of epidermal growth factor. Radiat Res 86:133–146

    Article  PubMed  CAS  Google Scholar 

  • Marmor JB (1979) Interaction of hyperthermia and chemotherapy in animals. Cancer Res 39:2269–2276

    PubMed  CAS  Google Scholar 

  • Marmor JB, Kozak D, Hahn GM (1979) Effects of systematically administered bleomycin or adriamycin with local hyperthermia on primary tumor and lung metastases. Cancer Treat Rep 63:1311–1325

    Google Scholar 

  • Martinez A, Fajardo LF, Kernahan P, Prionas S, Hahn GM (1980) The effects of radio frequency heating on normal fat and muscular tissues: histologically based tissue injury grading system. In: Third international symposium: cancer therapy by hyperthermia, drugs and radiation, Fort Collins, June 22–26

    Google Scholar 

  • Martinez AA, Meshorer A, Meyer JL, Hahn GM, Fajardo LF, Prionas SD (1983) Thermal sensitivity and thermotolerance in normal porcine tissues. Cancer Res 43:2072–2075

    PubMed  CAS  Google Scholar 

  • Massicotte-Nolan P, Glofcheski DJ, Kruuv J, Lepock JR (1981) Relationship between hyperthermic cell killing and protein denaturation by alcohols. Radiat Res 87:284–299

    Article  PubMed  CAS  Google Scholar 

  • McCormick W, Penman SH (1969) Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol 39:315–333

    Article  PubMed  CAS  Google Scholar 

  • Mehdi SQ, Recktenwald DJ, Smith LM, Li GC, Armour EP, Hahn GM (1984) Effect of hyperthermia on murine cell surface histocompatibility antigens. Cancer Res 44:3394–3397

    PubMed  CAS  Google Scholar 

  • Mella O (1985) Combined hyperthermia and cis-diam-minedichloroplatinum in BDIX rats with transplanted BT4A tumors. Int J Hyperthermia 1:171–183

    Article  PubMed  CAS  Google Scholar 

  • Meyer KR, Hopwood LE, Gillette EL (1979) The thermal response of mouse adenocarcinoma cells at low pH. Eur J Cancer 15:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Meyn RE, Corry PM, Fletcher SE, Demetriades M (1980) Thermal enhancement of DNA damage in mammalian cells treated with cis-diamminedichloroplatinum (II). Cancer Res 40:1136–1139

    PubMed  CAS  Google Scholar 

  • Mikkelsen RB, Wallach DFH (1982) Transmembrane ion gradients and thermochemotherapy. In: Gautherie MA (eds) Biomedical thermology. International symposium, Straßburg 1982. Liss, New York, pp 103–107

    Google Scholar 

  • Milligan AJ, Metz JA, Leeper DB (1984) Effect of intestinal hyperthermia in the Chinese hamster. Int J Radiat Oncol Biol Phys 10:259–263

    Article  PubMed  CAS  Google Scholar 

  • Mills MD, Meyn RE (1983) Hyperthermic potentiation on unre-joined DNA strand breaks following irradiation. Radiat Res 95:327–338

    Article  PubMed  CAS  Google Scholar 

  • Mirtsch S, Streffer C, van Beuningen D, Rebmann A (1984) ATP metabolism in human melanoma cells after treatment with hyperthermia (42°C) In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 19–22

    Google Scholar 

  • Mirtsch S, Strohmenger U, Streffer C (1988) Glutathione level in melanoma cells and tissue. Recent Results Cancer Res 107:22–26

    PubMed  CAS  Google Scholar 

  • Mitchell JB, Russo A, Kinsella TJ, Glatstein E (1983) Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res 43:987–991

    PubMed  CAS  Google Scholar 

  • Mivechi NF, Dewey WC (1984) Effect of glycerol and low pH on heat-induced cell killing and loss of cellular DNA polymerase activities in Chinese hamster ovary cells. Radiat Res 99:352–362

    Article  PubMed  CAS  Google Scholar 

  • Mizuno S, Ishida A (1981) Potentiation of bleomycin cytotoxicity toward cultured mouse cells by hyperthermia and ethanol. Jpn J Cancer Res 72:395–402

    CAS  Google Scholar 

  • Mizuno S, Amagai M, Ishida A (1980) Synergistic cell killing by antitumor agents and hyperthermia in cultured cells. Jpn J Cancer Res 71:471–478

    CAS  Google Scholar 

  • Mizuno S, Ishida A, Amagai M (1981) Potentiation of the action of antitumor agents by hyperthermia. Gano Kagakuryoho 8 [Suppl]:147–153

    CAS  Google Scholar 

  • Mondovi B, Strom R, Rotilio G et al. (1969 a) The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration. Eur J Cancer 5:129–136

    Article  PubMed  CAS  Google Scholar 

  • Mondovi B, Finazzi-Agro A, Rotilio G, Strom R, Moricca G, Rossi-Fanelli A (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. II. Studies on nucleic acids and protein synthesis. Eur J Cancer 5:137–146

    Article  PubMed  CAS  Google Scholar 

  • Monson TP, Henle KJ, Moss AJ, Nagle WA (1984) Experimental test of the polyol hypothesis: the effect of aldose reductase inhibitors on thermotolerance development and measurements of intracellular sugar and polyol content in ther-motolerant CHO cells. In: Proceedings of the 32nd annual meeting of the Radiation Research Society (abstract). Orlando, Florida, p 62

    Google Scholar 

  • Morgan JE, Bleehen NM (1981a) Response of EMT6 multicellular tumor spheroids to hyperthermia. Br J Cancer 43:384–391

    Article  PubMed  CAS  Google Scholar 

  • Morgan JE, Bleehen NM (1981b) Interactions between misonidazole and hyperthermia in EMT6 spheroids. Br J Cancer 44:810–818

    Article  PubMed  CAS  Google Scholar 

  • Morgan JE, Honess D, Bleehen NM (1979) The interaction of thermal tolerance with drug cytotoxicity in vitro. Br J Cancer 39:422–428

    Article  PubMed  CAS  Google Scholar 

  • Morris CC, Field SB (1985) The relationship between heating time and temperature for rat tail necrosis with and without occlusion of the blood supply. Int J Radiat Biol 47:41–48

    Article  CAS  Google Scholar 

  • Morris CC, Myers R, Field SB (1977) The response of the rat tail to hyperthermia. Br J Radiol 50:576

    Article  PubMed  CAS  Google Scholar 

  • Moritz A, Henriques FC (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23:695–720

    PubMed  CAS  Google Scholar 

  • Muckle DS, Dickson JA (1973) Hyperthermia (42°C) as an adjuvant to radiotherapy nad chemotherapy in the treatment of the allegeneic VX2 carcinoma in the rabbit. Br J Cancer 27:307–315

    Article  PubMed  CAS  Google Scholar 

  • Murray D, Milas L, Meyn RE (1984) DNA damage produced by combined hyperglycemia and hyperthermia in two mouse fibrosarcoma tumors in vivo. Int J Radiat Oncol Biol Phys 10:1679–1682

    Article  PubMed  CAS  Google Scholar 

  • Murthy MS, Khandekar JD, Travis JD, Scanion EF (1984) Combined effect of hyperthermia (HT) and platinum compounds in vivo and in vitro on murine and human tumor cells. In: Hyperthermic oncology 1984, vol 1. Proceedings of the 4th international symposium on hyperthermic oncology. Aarhus, 2–6 July 1984, pp 421–424

    Google Scholar 

  • Nagle WA, Moss AJ Jr (1983) Inhibitors of poly (ADP-ribose) synthetase enhance the cytotoxicity of 42 °C and 45 °C hyperthermia in cultured Chinese hamster cells. Int J Radiat Biol 44:475–481

    Article  CAS  Google Scholar 

  • Nagle WA, Moss AJ, Baker ML (1982) Increased lethality at 42°C for hypoxic Chinese hamster cells heated under conditions of energy depreviation. NCI Monogr 61:107–110

    CAS  Google Scholar 

  • Naruse Sh, Higuchi T, Horikawa Y, Tnaka Ch, Nakamura K, Hirakawa K (1986) Radiofrequency hyperthermia with successive monitoring of its effects on tumors using NMR spectroscopy. Proc Natl Acad Sci USA 83:8343–8347

    Article  PubMed  CAS  Google Scholar 

  • Nauts HC (1985) Hyperthermic oncology: historic aspects and future trends. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 199–209

    Google Scholar 

  • Neumann HA, Fiebig HH, Löhr GW, Engelhardt R (1985) Effects of cytostatic drugs and 40.5 °C hyperthermia on human clonogenic tumor cells. Eur J Cancer Clin Oncol 21:515–523

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OS (1984) Facitonated hyperthermia and thermotolerance. Danish Medical Bulletin 31:376–390

    PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1982 a) Influence of time and temperature on the kinetics of thermotolerance in LI A2 cells in vitro. Cancer Res 42:4190–4196

    PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1982 b) Importance of preheating temperature and time for the induction of thermotolerance in a solid tumour in vivo. Br J Cancer 46:894–903

    Article  PubMed  CAS  Google Scholar 

  • Ngo FOH, Han A, Utsumi H, Elkind MM (1977) Comparative radiobiology of fast neutrons: relevance to radiotherapy and basic studies. Int J Radiat Oncol Biol Phys 3:187–193

    Article  PubMed  CAS  Google Scholar 

  • Ohnoshi T, Ohnuma T, Beranek JT, Holland JF (1985) Combined cytotoxicity effect of hyperthermia and anthracycline antibiotics on human tumor cells. JNCI 71:275–281

    Google Scholar 

  • Ohtsuka K, Nakamura W (1986) Modification of the thermal sensitivity of the murine foot and tumor by prior hypoxic treatment. Int J Hyperthermia 2:65–73

    Article  PubMed  CAS  Google Scholar 

  • Ohyama H, Yamada T (1980) Reduction of rat thymocyte interphase death by hyperthermia. Radiat Res 82:342–351

    Article  PubMed  CAS  Google Scholar 

  • Okumura Y, Reinhold H (1978) Heat sensitivity of rat skin. Eur J Cancer 14:1161–1166

    Article  PubMed  CAS  Google Scholar 

  • Omar RA, Lanks KW (1984) Heat shock protein synthesis and cell survival in clones of normal and SV40-transformed mouse embryo cells. Cancer Res 44:3976–3982

    PubMed  CAS  Google Scholar 

  • Osieka R, Magin RL, Atkinson ER (1978) The effect of hyperthermia on human colon cancer xenografts in nude mice. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 287–290

    Google Scholar 

  • Ossovski L, Sachs L (1967) Temperature sensitivity of polyoma virus: induction of cellular DNA synthesis and multiplication of transformed cells at high temperatures. Proc Natl Acad Sci USA 58:1938–1945

    Article  PubMed  CAS  Google Scholar 

  • Ostrow S, van Echo D, Egorin M, Whitacre M, Grochow L, Aisner J, Colvin M, Bachur M, Bachur N, Wiernik PH (1982) Cyclophosphamide pharmacokinetics in patients receiving whole-body hyperthermia. NCI Monogr 61: 401–403

    Google Scholar 

  • Overgaard J (1976 a) Ultrastructure of a murine mammary carcinoma exposed to hyperthermia in vivo. Cancer Res 36: 983–995

    PubMed  CAS  Google Scholar 

  • Overgaard J (1976 b) Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res 36:3077–3081

    PubMed  CAS  Google Scholar 

  • Overgaard J (1977) Effect of hyperthermia on malignant cells in vivo: a review and hypothesis. Cancer 39:2637–2646

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1980) Effect of misonidazole and hyperthermia on the radiosensitivity of a C3H mouse mammary carcinoma and its surrounding normal tissue. Brit J Cancer 41:10–21

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1981) Fractionated radiation and hyperthermia. Experimental and clinical studies. Cancer 48:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1985 a) History and heritage — an introduction. In: Overgaard J (ed) Hyperthermia oncology. Taylor and Francis, London, pp 3–8

    Google Scholar 

  • Overgaard J (1985 b) Hyperthermic oncology. Taylor and Francis, London

    Google Scholar 

  • Overgaard J, Suit H (1979) Time-temperature relationship in hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res 39:3248–3253

    PubMed  CAS  Google Scholar 

  • Overgaard K (1934) Ãœber Wärmetherapie bösartiger Tumoren. Acta Radiol. [Then] (Stockh.) 15:89–99

    Article  Google Scholar 

  • Overgaard K, Overgaard J (1972) Investigations on the possibility of a thermic tumor therapy: II. Action of combined heat-roentgen treatment on a transplanted mouse mammary carcinoma. Eur J Cancer 8:573–575

    Article  PubMed  CAS  Google Scholar 

  • Overgaard K, Overgaard J (1974) Radiation sensitsitizing effect of heat. Acta Radiol. [Ther.] (Stockh.) 13:501–511

    CAS  Google Scholar 

  • Palzer R, Heidelberger C (1973) Influence of drugs and synchrony on the hyperthermic killing of HeLa cells. Cancer Res 33:422–427

    PubMed  CAS  Google Scholar 

  • Panniers R, Henshaw EC (1984) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumor cells. Eur J Biochem 140:209–214

    Article  PubMed  CAS  Google Scholar 

  • Parks LC, Smith GV (1983) Systemic hyperthermia by extracorporal induction: techniques and results. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 407–446

    Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Applied Physiol 1:93–99

    CAS  Google Scholar 

  • Pettigrew RT, Galt JM, Ludgate CM, Smith AN (1974) Clinical effects of whole-body hyperthermia in advanced malignancy. Br Med J 4:679–682

    Article  PubMed  CAS  Google Scholar 

  • Pincus G, Fischer A (1931) The growth and death of tissue cultures exposed to supranormal temperatures. J Exp Med 54:323–332

    Article  PubMed  CAS  Google Scholar 

  • Pomp H (1978) Clinical application of hyperthermia in gynecological malignant tumors. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 326–327

    Google Scholar 

  • Power J, Harris J (1977) Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios for exponential and plateau-phase cultures. Radiology 123:767–770

    PubMed  CAS  Google Scholar 

  • Privalov PL (1979) Stability of proteins. Adv Protein Chem 33:167–241

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst GP, Spiro IJ, Azzam EJ, Sargent M (1987) Normal cells and malignant cells transfected with the HRas oncogene have the same heat sensitivity in culture. Int J Hyperthermia 3:209–216

    Article  PubMed  CAS  Google Scholar 

  • Rabbani B, Sondhaus CA, Swingle KF (1978) Cellular response to hyperthermia and bleomycin: effect of time sequencing and possible mechanisms. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 291–293

    Google Scholar 

  • Radford JR (1983) Effects of hyperthermia on the repair of X-ray-induced DNA double strand breaks in mouse L cells. Int J Radiat Biol 43:551–557

    Article  CAS  Google Scholar 

  • Rassow J (1987) Physikalisch-methodische Grundlagen der Strahlentherapie. In: Scherer E (ed) Strahlentherapie. Springer, Berlin Heidelberg New York, pp 1–105

    Google Scholar 

  • Read RA, Fox MH, Bedford JS (1983) The cell cycle dependence of thermotolerance. Radiat Res 93:93–106

    Article  PubMed  CAS  Google Scholar 

  • Reeves O (1972) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79:157–159

    Article  PubMed  CAS  Google Scholar 

  • Reeves O (1982) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79:157–159

    Article  Google Scholar 

  • Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1984) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Francis and Taylor, London, pp 41–52

    Google Scholar 

  • Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1985) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology 1984, vol. II. Taylor and Francis, London, pp 41–52

    Google Scholar 

  • Reiter T, Penman S (1983) Prompt heat shock proteins: transla-tionally regulated synthesis of new proteins associated with the nuclear matrix-intermediate filaments as an early response to heat shock. Proc Natl Acad Sci USA 80:4737–4741

    Article  PubMed  CAS  Google Scholar 

  • Rice LC, Urano M, Maher J (1982) The kinetics of thermotolerance in the mouse foot. Radiat Res 89:291–297

    Article  PubMed  CAS  Google Scholar 

  • Robins HI, Dennis WH, Slattery IS, Lange TA, Yatvin MB (1983) Systemic lidocaine enhancement of hyperthermia-in-duced tumor regression in transplantable murine tumor models. Cancer Res 43:3187–3191

    PubMed  CAS  Google Scholar 

  • Robinson JE, Wizenberg MJ (1974) Thermal sensitivity and the effect of elevated temperatures on the radiation sensitivity of Chinese hamster cells. Acta Radiol [Ther] (Stockh) 13:241–249

    CAS  Google Scholar 

  • Robinson JE, Wizenberg MJ, McCready W, Scheltema J (1974) Combined hyperthermia and radiation suggest an alternative to heavy particle therapy for reduced oxygen enhancement ratios. Nature 251:521–522

    Article  PubMed  CAS  Google Scholar 

  • Rofstad EK, Brustad T (1986) Arrhenius analysis of the heat response in vivo and in vitro of human melanoma xenografts. Int J Hyperthermia 2:359–368

    Article  PubMed  CAS  Google Scholar 

  • Rofstad EK, Wahl A, Tveit KM, Monge OR, Brustad T (1985) Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumors in man. Radiother Oncol 4:33–44

    Article  PubMed  CAS  Google Scholar 

  • Rose WC, Veras GH, Laster WR Jr, Schabel FM Jr (1979) Evaluation of whole-body hyperthermia as an adjunct to chemotherapy in murine tumors. Cancer Treat Rep 63:1311–1325

    PubMed  CAS  Google Scholar 

  • Roti Roti JL (1982) Heat-induced cell death and radiosensitiza-tion: molecular mechanisms. NCI Monogr 61:3–9

    CAS  Google Scholar 

  • Roti Roti JL, Henle KJ (1979) Comparison of two mathematical models for describing heat-induced cell killing. Radiat Res 78:522–531

    Article  PubMed  CAS  Google Scholar 

  • Roti Roti JL, Painter RB (1982) Effects of hyperthermia on the Sedimentation of nucleoids from HeLa cells in sucrose gradients. Radiat Res 89:166–175

    Article  PubMed  CAS  Google Scholar 

  • Rotstein LE, Daly J, Rozsa P (1983) Systemic ther-mochemotherapy in a rat model. Can J Surg 26:113–116

    PubMed  CAS  Google Scholar 

  • Rowley R, Joyner DE, Stewart JR (1987) In vitro response to hyperthermia or X-irradiation of diploid and tetraploid RIF-1 cells separated by centrifugal elutriation. Int J Hyperthermia 3:235–244

    Article  PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Hulstaart CE, Konings AWT (1984) Permeability change of cells treated with hyperthermia alone and in combination with X-irradiation. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 65–68

    Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1985 a) Correlation between cellular survival and potassium loss in mouse fibroblasts after hyperthermia alone and after a combined treatment with X-rays. Radiat Res 101:326–331

    Article  PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1985 b) Correlation of colony forming ability of mammalian cells with potassium content after hyperthermia under different experimental conditions. Radiat Res 103:452–454

    Article  PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1986) Na+/K+ ATPase activity in mouse lung fibroblasts and HeLa S-3 cells during and after hyperthermia. Int J Hyperthermia 2:51–59

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1987) Heat-induced K+ loss, trypan blue uptake, and cell lysis in different cell lines: effect of serum. Radiat Res 109:303–309

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Mitchell JB, McPherson S (1984) The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. Br J Cancer 49:753–758

    Article  PubMed  CAS  Google Scholar 

  • Sapareto SA (1987) A workshop on thermal dose in cancer therapy: introduction. Int J Hyperthermia 3:289–290

    Article  PubMed  CAS  Google Scholar 

  • Sapareto SA, Hopwood L, Dewey W, Raju M, Gray J (1978) Effects of hyperthermia on survival and progression of Chinese hamster overy cells. Cancer Res 38:393–400

    PubMed  CAS  Google Scholar 

  • Schamhart DHJ, van Walraven HS, Weigant FAC, Linnemans WAM, van Rijn J, van den Berg J, van Wijk R (1984) Thermotolerance in cultured hepatoma cells: cell viability, cell morphology, protein synthesis, and heat shock proteins. Radiat Res 98:89–95

    Article  Google Scholar 

  • Schlag H, Lücke-Huhle C (1976) Cytokinetic studies on the effect of hyperthermia on Chinese hamster lung cells. Eur J Cancer 12:827–831

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (eds) (1982) Heat shock: from bacteria to Man. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schlesinger MJ, Aliperti G, Kelley PM (1982b) The response of cells to heat shock. Trends Biochem Sci 7:222–225

    Article  CAS  Google Scholar 

  • Schubert B, Streffer C, Tamulevicius P (1982) Glucose metabolism in mice during and after whole-body hyperthermia. N C I Monogr 61:203–205

    CAS  Google Scholar 

  • Schulman N, Hall E (1974) Hyperthermia: its effect on proliferative and plateau phase cell cultures. Radiology 113: 207–209

    Google Scholar 

  • Sciandra JJ, Subjeck JR (1984) Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res 44:5188–5194

    PubMed  CAS  Google Scholar 

  • Shah SA, Jain RK, Finney PL (1983) Enhanced metastasis formation by combined hyperthermia and hyperglycemia in rats bearing W256 carcinosarcoma. Cancer Lett 19: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Shall S (1984) ADR-ribose in DNA repair: a new component of DNA excision repair. Adv Radiat Biol 11:1–69

    CAS  Google Scholar 

  • Shenoy MA, Singh BB (1985) Temperature-dependent modification of radiosensitivity following hypoxic cytocidal action of delorpromazine. Radiat Environ Biophys 24:113–117

    Article  PubMed  CAS  Google Scholar 

  • Sijens PE, Bovee WMMJ, Seijkens D, Koole P, Los G, van Rijs-sel RH (1987) Murine mammary tumor response to hyperthermia and radiotherapy evaluated by in vivo 31-P-nuclear magnetic resonance spectroscopy. Cancer Res 47: 6467–6473

    PubMed  CAS  Google Scholar 

  • Silberman AW, Rand RW, Storm FK, Drury FB, Benz ML, Morton DL (1985) Phase 1 trial of thermochemotherapy for brain malignancy. Cancer 56:48–56

    Article  PubMed  CAS  Google Scholar 

  • Simard R, Bernhard W (1967) A heat-sensitive cellular function located in the nucleolus. J Cell Biol 34:61–76

    Article  PubMed  CAS  Google Scholar 

  • Simpson TA, La Russa PG, Mullins DW, Daugherty JP (1987) Restoration of hyperthermia-associated increased protein to DNA ratio of nucleoids. Int J Hyperthermia 3:49–62

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GI (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Skibba JL, Collins FG (1978) Effect of temperature on biochemical functions in the isolated perfused rat liver. J Surg Res 24:435–441

    Article  PubMed  CAS  Google Scholar 

  • Sminia P, Haveman J, Wondergem J, van Dijk JDP, Lebesque JV (1987) Effects of 434 MHz microwave hyperthermia applied to the rat in the region of the cervical spinal cord. Int J Hyperthermia 3:441–452

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Clement SS, Levitt SH (1977) Cytotoxic and radiosensitizing effects of 5-thio-D-glucose hypoxic cells. Radiology 123:201–205

    PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt S (1980) Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer 41:309–312

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Rhee JG, Levitt SH (1982) Effect of hyperthermia on hypoxic cell fraction in tumors. Int J Radiat Oncol Biol Phys 8:851–856

    PubMed  CAS  Google Scholar 

  • Spiro IJ, Denman DL, Dewey WC (1982) Effect of hyperthermia on CHO DNA polymerase- and ß. Radiat Res 89:134–139

    Article  PubMed  CAS  Google Scholar 

  • Stehlin JS Jr (1969) Hyperthermic perfusion with chemotherapy for cancers of the extremities. Surg Gynecol Obstet 120:305–308

    Google Scholar 

  • Stehlin JS Jr, Giovanella BC, Ipolyi de PD, Muenz LR, Anderson RF (1975) Results of hyperthermic perfusion for melanoma of the extremities. Surg Gynecol Obstet 140:339–348

    PubMed  CAS  Google Scholar 

  • Stevenson MA, Minton KW, Hahn GM (1981) Survival and con-canavalin-A-induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol, and X-irradiation. Radiation Res 86:467–478

    Article  PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J (1980) Fractionation studies with combined X-rays and hyperthermia in vivo. Brit J Radiol 53:346–356

    Article  PubMed  CAS  Google Scholar 

  • Stone H (1978) Enhancement of local tumor control by misonidazole and hyperthermia. Br J Cancer 37 (Supp III): 178–183

    CAS  Google Scholar 

  • Streffer C (1963) Reaktivität und Struktur von Aminosäuren und Proteinen (Cystein und β-Galaktosidase). Dissertation, Universität Freiburg

    Google Scholar 

  • Streffer C (1969) Strahlen-Biochemie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Streffer C (1982) Aspects of biochemical effects by hyperthermia. N C I Monogr 61:11–16

    CAS  Google Scholar 

  • Streffer C (1985 a). Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 213–222

    Google Scholar 

  • Streffer C (1985 b) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1:305–319

    Article  PubMed  CAS  Google Scholar 

  • Streffer C (1987) Biological basis for the use of hyperthermia in tumour therapy. Strahlentherapie 163:416–419

    CAS  Google Scholar 

  • Streffer C (1988 a) Aspects of metabolic changes of hyperthermia. In: Issels RD, Wilmanns W (eds) Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York, pp 7–16 (Recent results in cancer res, vol 107)

    Google Scholar 

  • Streffer C (1988 b) Effects of hyperthermic treatments on malig-nant cells and animal tumors: introductory remarks. In: Hinkelbein W et al. (eds) Preclinical hyperthermia. Springer, Berlin Heidelberg New York, pp 89–95 (Recent results in cancer res, vol 109)

    Google Scholar 

  • Streffer C, van Beuningen D (1985) Zelluläre Strahlenbiologie und Strahlenpathologie (Ganz- und Teilkörperbestrahlung). In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zup-pinger A (eds) Handbuch der medizinischen Radiologie, vol XX. Springer, Berlin Heidelberg New York, pp 1–39

    Google Scholar 

  • Streffer C, van Beuningen D, Elias S (1977) Comparative effects of tritiated water and thymidine on the preimplanted mouse embryos in vitro. Curr Top Radiat Res Q 12:182–193

    Google Scholar 

  • Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  • Streffer C, van Beuningen D, Zamboglou N (1979) Cell killing by hyperthermia and radiation in cancer therapy. In: Abe M, Sakamoto K, Philips TL (eds) Treatment of radioresistant cancers. Elsevier/North-Holland Biomedical, Amsterdam, pp 55–70

    Google Scholar 

  • Streffer C, Hengstebeck S, Tamulevicius P (1981) Glucose metabolism in mouse tumor and liver with and without hyperthermia. Henry Ford Hosp Med J 29:41–44

    PubMed  CAS  Google Scholar 

  • Streffer C, Tamulevicius P, Schmidt K (1983 a) Poly (ADPR) synthetase activity in melanoma cells after hyperthermia and radiation. Radiat Res 94:589 (abstract)

    Google Scholar 

  • Streffer C, van Beuningen D, Bertholdt G, Zamboglou N (1983 b) Some aspects of radiosensitization by hyperthermia: neutrons and X-rays. In: Kano E (ed) Fundamentals of cancer therapy by hyperthermia, radiation and chemicals. MAG Tokyo, pp 121–134

    Google Scholar 

  • Streffer C, van Beuningen D, Uma Devi P (1984) Radiosensitization by hyperthermia in human melanoma cells: single and fractionated treatments. Cancer Treat Rev 11:179–185

    Article  PubMed  Google Scholar 

  • Strom R, Crifo C, Rossi-Fanelli A, Mondovi B (1977) Biochemical aspects of heat sensitivity of tumor cells. In: Rossi-Fanelli A, Cavalière R, Mondovi B, Morrica G (eds) Selective heat sensitivity of cancer cells. Springer, Berlin Heidelberg New York, pp 7–35

    Google Scholar 

  • Subjek JR, Sciandra JJ, Johnson RJ (1982) Heat shock proteins: a comparison of induction kinetics. Br J Radiol 55:579–584

    Article  Google Scholar 

  • Suit HD, Shwayder M (1974) Hyperthermia: potential as an anti-tumor agent. Cancer 34:122–129

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K (1967) Application of heat to cancer chemotherapy: experimental studies. Nagoya J Med Sci 30:1–21

    PubMed  CAS  Google Scholar 

  • Tacker JR, Anderson RU (1982) Delivery of antitumor drugs to bladder cancer by use of phase transition liposomes and hyperthermia. J Urol 127:1211–1214

    PubMed  CAS  Google Scholar 

  • Takeda M, Majima H, Okada S, Suzuki N, Kubodera A (1987) Surviving fractions and cure-rate in spheroids by X-rays or heat. In: Onoyama Y (ed) Hyperthermic oncology ’86 in Japan. MAG Tokyo, pp 157–158

    Google Scholar 

  • Takeshita M, Grollmann AP, Ohtsubo E et al. (1978) Interaction of bleomycin with DNA. Proc Natl Acad Sci USA 75:5983–5987

    Article  PubMed  CAS  Google Scholar 

  • Takiyama W (1984) Experimental studies on combined chemotherapy with hyperthermia and ethanol for advanced esophageal cancer. II. Effects of combined treatments on tumor growth in tumor-bearing mice. Nippon Geka Gakki Zasshi 85:118 (abstract)

    Google Scholar 

  • Tamulevicius P, Streffer C (1983) Does hyperthermia produce increased lysosomal enzyme activity? Int J Radiat Biol 43:321–327

    Article  CAS  Google Scholar 

  • Tamulevicius P, Schmidt K, Streffer C (1984a) The effects of X-irradiation, hyperthermia and combined modality treatment on poly (ADPR) synthetase activity in human melanoma cells. Radiat Res 100:65–77

    Article  PubMed  CAS  Google Scholar 

  • Tamulevicius P, Würzinger U, Luscher G, Streffer C (1984b) Lipid metabolism in mouse liver and adenocarcinoma following hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 23–26

    Google Scholar 

  • Terasima T, Tolmach LJ (1963 a) Variations in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3:11–33

    Article  PubMed  CAS  Google Scholar 

  • Terasima T, Tolmach LJ (1963 b) X-ray sensitivity and DNA synthesis in synchronously dividing populations of HeLa cells. Science 140:490–492

    Article  PubMed  CAS  Google Scholar 

  • Thislethwaite AJ, Alexander GA, Nerlinger RE, Moylan DJ, Leeper DB (1987) Modification of human tumor pH by elevation of blood glucose. Int J Radiat Oncol Biol Phys 13:603–610

    Article  Google Scholar 

  • Tomosovic SP, Steck PA, Heitzman D (1983) Heat stress proteins and thermal resistance in rat mammary cells. Radiat Res 95:399–413

    Article  Google Scholar 

  • Tomosovic SP, Rosenblatt PL, Johnston DA, Tang K, Lee PSY (1984) Heterogeneity in induced heat resistance and its relation to synthesis of stress proteins in rat tumor cell clones. Cancer Res 44:5850–5856

    Google Scholar 

  • Tsuboi A (1988) Effects of hyperthermia on mouse L cells irradiated with fractionated X-rays. Int J Hyperthermia 4:655–664

    Article  PubMed  CAS  Google Scholar 

  • Twentyman PR, Morgan JE, Donaldson J (1978) Enhancement by hyperthermia of the effect of BCNU against the EMT6 mouse tumor. Cancer Treat Rep 62:439–443

    PubMed  CAS  Google Scholar 

  • Urano M, Kahn J (1983) The change in hypoxic and chronically hypoxic cell fraction in murine tumors treated with hyperthermia. Radiat Res 96:549–559

    Article  PubMed  CAS  Google Scholar 

  • Urano M, Kahn BS (1986) Differential kinetics of thermal resistance (thermotolerance) between murine normal and tumour tissues. Int J Radiat Oncol Biol Phys 12:89–93

    PubMed  CAS  Google Scholar 

  • Urano M, Kim MS (1983) Effect of hyperglycemia in ther-mochemotherapy of a spontaneous murine fibrosarcoma. Cancer Res 43:3041–3044

    PubMed  CAS  Google Scholar 

  • Urano M, Kim MS, Kenton L, Li ML (1985) Effect of ther-mochemotherapy (combined cyclophosphamide and hyperthermia) given at various temperatures with or without glucose administration on a murine fibrosarcoma. Cancer Res 45:4162–4166

    PubMed  CAS  Google Scholar 

  • van Beuningen D (1983) Hyperthermia als cytotoxisches und strahlensensibilisierendes Agens: zelluläre Effekte — eine Ãœbersicht. Strahlentherapie 159:60–66

    PubMed  Google Scholar 

  • van Beuningen D, Streffer C (1988) Importance of thermotolerance for radiothermotherapie as assessed using too human melanoma cell lines. In: Hinkelbein W et al. (eds) Preclinical hyperthermia. Springer, Berlin Heidelberg New York, pp 203–213 (Recent results in cancer res, vol 109)

    Google Scholar 

  • van Beuningen D, Molls M, Schulz S, Streffer C (1978) Effects of irradiation and hyperthermia on the development of preimplanted mouse embryos in vitro. In: Streffer C et al. (eds) Cancer therapy by hyperthermic and radiation. Urban and Schwarzenberg, Baltimore, pp 151–153

    Google Scholar 

  • van Beuningen D, Issa M, Breipohl W, Streffer C, Raumwolf M (1983) Light- and electron-microscopical investigations on the effect of hyperthermia on the small intestine. Strahlentherapie 159:367 (abstract)

    Google Scholar 

  • van Beuningen D, Streffer C, Pelzer T (1985) Radiosensitization of exponential and plateau phase cells. Strahlentherapie 161:552

    Google Scholar 

  • Van der Linden PWG, Sapareto SA, Corbett TH, Valeriote FA (1984) Adriamycin and heat treatments in vitro and in vivo. Hyperthermic Oncology 1984, Vol. 1, Summary papers. Proceedings of the 4th International Symposium on Hyperthermic Oncology, Aarhus, Denmark, 2–6 July 1984, pp 449–452

    Google Scholar 

  • van Rijn J, van den Berg J, Schamhart DHJ, van Wijk R (1984) Effect of thermotolerance on thermal radiosensitization in hepatoma cells. Radiat Res 97:318–328

    Article  PubMed  Google Scholar 

  • Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. In: Streffer C (ed) Hyperthermia and the therapy of malignant tumors. Springer, Berlin Heidelberg New York, pp 71–109 (Recent results in cancer research, vol 104)

    Google Scholar 

  • Vaupel P, Müller-Klieser W, Otte J, Manz R, Kallinowski F (1983 a) Durchblutung, Sauerstoffversorgung des Gewebes und pH-Verteilung in malignen Tumoren nach Hyperthermie. Pathophysiologische Grundlagen und Einfluß verschiedener Hyperthermiedosen. Strahlentherapie 159: 73–81

    PubMed  CAS  Google Scholar 

  • Vaupel P, Benzing H, Egelhof E, Müller-Klieser W, Müller-Schauenburg (1983 b) The effect of various thermal doses on the regional tumor blood flow measured by heat clearance. Strahlentherapie 159:384 (abstract)

    Google Scholar 

  • Verma SP, Wallach DFH (1976) Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: Evidence from Raman spectroscopy. Proc Natl Acad Sci USA 73:3558–3561

    Article  PubMed  CAS  Google Scholar 

  • Vexler AM, Litinskaya LL (1986) Changes in intracellular pH induced by hyperthermia and hypoxia. Int J Hyperthermia 2:75–81

    PubMed  CAS  Google Scholar 

  • Vidair CA, Dewey WC (1986) Evaluation of a role of Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing. Radiat Res 105:187–200

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Cornforth M, Farook SAF (1982) Hyperthermic potentiation of chromosome aberrations by anticancer antibiotics. Cytogenet Cell Genet 33:35–41

    Article  PubMed  CAS  Google Scholar 

  • von Ardenne M (1971) The cancer multi-step therapy concept. Panminerva Med 13:509–519

    Google Scholar 

  • von Ardenne M (1975) Prinzipien und Konzept 1974 der Krebs-Mehrschritt-Therapie. Radiobiol Radiother 16:99–119

    Google Scholar 

  • von Ardenne M (1978) On a new physical principle for selective local hyperthermia of tumor tissue. In: Streffer C, van Beun-ingen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the second international symposium Essen, June 2–4 1977 Urban and Schwarzenberg, Baltimore, pp 96–104

    Google Scholar 

  • von Ardenne M (1982) Selective multiphase cancer therapy: Conceptional aspects and experimental basis. 185 Adv. Pharmacol Chemother. 10:339–380

    Google Scholar 

  • von Ardenne M, Reitnauer P (1976) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung in vivo durch NAD. Arch. Geschwulstforsch 30:319–330

    Google Scholar 

  • von Ardenne M, Chaplain R, Reitnauer P (1969) Selektive Krebszellenschädigung durch eine Attackenkombination mit Ãœbersäuerung Hyperthermie, Vitamin A, Dimethylsulfoxid und weiteren die Freisetzung lysosomaler Enzyme fördernder Agenzien. Arch Geschwulstforsch 33:331–344

    Google Scholar 

  • Wallach D (1977) Basic mechanisms in tumor thermotherapy. J Mol Med 2:381–403

    CAS  Google Scholar 

  • Wallach DHF (1978) Action of hyperthermia and ionizing radiation on plasma membranes: In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, p 19–28

    Google Scholar 

  • Wallenfels K, Streffer C (1964) Chemische Reaktivität von Proteinen. In: 14. Colloquium der Gesellschaft für physiologische Chemie in Mosbach/Baden. Springer, Berlin Göttingen Heidelberg, pp 6–40

    Google Scholar 

  • Wallenfels K, Streffer C (1966) Das Dissoziationsverhalten von Cystein und verwandten SH-Verbindungen. Biochem Z 346:119–132

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1926) Ãœber den Stoffwechsel von Tumoren im Körper. Klin Wochenschr 5:829–834

    Article  CAS  Google Scholar 

  • Ward KA, Jain RK (1988) Response of tumours to hyperglycaemia: characterization, significance and role in hyperthermia. Int J Hyperthermia 4:223–250

    Article  PubMed  CAS  Google Scholar 

  • Warocquier R, Scherrer K (1969) RNA metabolism in mammalian cells at elevated temperature. Eur J Biochem 10:362–370

    Article  PubMed  CAS  Google Scholar 

  • Warters RL, Roti Roti JL (1982) Hyperthermia and the cell nucleus. Radiat Res 92:458–462

    Article  PubMed  CAS  Google Scholar 

  • Warters RL, Stone OL (1983 a) Effects of hyperthermia on DNA replication in HeLa cells. Radiat Res 93:71–84

    Article  PubMed  CAS  Google Scholar 

  • Warters RL, Stone OL (1983 b) Histone protein and DNA synthesis by HeLa cells and thermal schock. Radiat Res 96:646

    Article  PubMed  CAS  Google Scholar 

  • Warters RL, Brizgys LM, Sharma R, Roti Roti JL (1986) Heat shock (45 °C) results in an increase of nuclear matrix protein mass in HeLa cells. Int J Radiat Biol 50:253–268

    Article  CAS  Google Scholar 

  • Weber G (1983) Biochemical strategy of cancer cells and the design of chemotherapy: GHA Glowes memorial lecture. Cancer Res 43:3466–3492

    PubMed  CAS  Google Scholar 

  • Weinstein JN, Magin RL, Cysyk RL, Zaharko DS (1980) Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res 40:1388–1395

    PubMed  CAS  Google Scholar 

  • Westermark F (1898) Ãœber die Behandlung des ulcerierenden Cervixcarcinoms mittels konstanter Wärme. Zentralbl Gynae-kol 22:1335

    Google Scholar 

  • Westermark N (1927) The effect of heat on rat tumors. Skand Arch Physiol 52:257–322

    Google Scholar 

  • Westra A, Dewey WC (1971) Heat shock during the cell cycle of Chinese hamster cells in vitro. Int J Radiat Biol 19:467–477

    Article  CAS  Google Scholar 

  • Wiegant F, Karelaars A, Blok F, Linnemanns W (1984) Effects of extra cellular Ca2+ concentrations upon hyperthermia induced cell death. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 3–6

    Google Scholar 

  • Wike-Hooley JL, Faithfull NS, van der Zee J, van den Berg AP (1983) Liver damage and extraction of indocyamine green under whole body hyperthermia. Eur J Appl Physiol 51:269–279

    Article  Google Scholar 

  • Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

  • Wizenberg M, Robinson JE (1975) Proceedings of the international symposium on cancer therapy by hyperthermia and radiation. American College of Radiology, Baltimore

    Google Scholar 

  • Wondergem J, Havemann J (1983) The response of previously irradiation mouse skin to heat alone or combined with irradiation: influence of thermotolerance. Int J Radiat Oncol 44:539–552

    CAS  Google Scholar 

  • Wondergem J, Begg A, Havemann J (1986) Effects of hyperthermia and X-irradiation on mouse stromal tissue. Int J Radiat Biol 50:65–76

    Article  CAS  Google Scholar 

  • Wondergem J, Strebel FR, Siddik ZH, Newman RA, Bull JMC (1988) The effects of anaesthetics on cis-platinum-induced toxicity at normal temperatures and during whole-body hyperthermia: the influence of NaCl concentration of the vehicle. Int J Hyperthermia 4:643–654

    Article  PubMed  CAS  Google Scholar 

  • Wong RSL, Dewey WC (1982) Molecular studies on the hyperthermic inhibition of DNA synthesis in Chinese hamster ovary cells. Radiat Res 92:370–395

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Someya F, Shimada S, Ohara K, Kukita A (1984) Thermochemotherapy for malignant melanoma: combination therapy of ACNU and hyperthermia in mice. J Invest Dermatol 82:180–184

    Article  PubMed  CAS  Google Scholar 

  • Yamane T, Koga S, Maeta M, Hamazoe R, Karino T, Oda M (1984) Effects of in vitro hyperthermia on concentration of adriamycin in Ehrlich ascites cells. Hyperthermic oncology 1984, vol. 1, summary papers. Proceedings of the 4th international symposium on hyperthermic oncology, Aarhus, 2–6 July 1984, pp 409–412

    Google Scholar 

  • Yatvin MB (1977) The influence of membrane lipid composition and procaine on hyperthermic death of cells. Int J Radiat Biol 32:513–521

    Article  CAS  Google Scholar 

  • Yatvin MB, Clifton KH, Dennis WH (1979) Hyperthermia and local anesthetics: potentiation of survival of tumor-bearing mice. Science 205:195–196

    Article  PubMed  CAS  Google Scholar 

  • Yatvin MB, Mühlensiepen H, Porschen W, Weinstein JN, Feinendegen LE (1981) Selective delivery of liposome-associ-ated cis-dichlorodiamineplatinum (II) by heat and its influence on tumor drug uptake and growth. Cancer Res 41:1602–1607

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Cree TC, Elson CE, Gipp JJ, Tegmo I-M, Vorpahl JW (1982) Probing the relationship of membrane fluidity to heat killing of cells. Radiat Res 89:644–646

    Article  PubMed  CAS  Google Scholar 

  • Yatvin MB, Abuirmeileh NM, Vorpahl JW, Elson CE (1983 a) Biological optimization of hyperthermia: modification of tumor membrane lipids. Eur J Cancer 19:657–663

    Article  CAS  Google Scholar 

  • Yatvin M-B, Vorpahl JW, Gould MN, Lyte M (1983 b) The effects of membrane modification and hyperthermia on the survival of P-388 and V-79 cells. Eur J Cancer 19:1247–1253

    Article  CAS  Google Scholar 

  • Yi PN (1983) Hyperthermia-induced intracellular ionic level changes in tumor cells. Radiat Res 93:534–544

    Article  PubMed  CAS  Google Scholar 

  • Zupi G, Badaracco G, Cavaliere R, Natali PG, Greco C (1984) Influence of sequence on hyperthermia and drug combination. Hyperthermic Oncology 1984, Vol. 1, Summary papers. Proceedings of the 4th International Symposium on Hyperthermic Oncology, Aarhus, Denmark, 2–6 July 1984, pp 429–432

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Streffer, C. (1990). Biological Basis of Thermotherapy (With Special Reference to Oncology). In: Gautherie, M. (eds) Biological Basis of Oncologic Thermotherapy. Clinical Thermology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74939-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74939-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74941-4

  • Online ISBN: 978-3-642-74939-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics