Skip to main content

Assessing the Solubilities and Reaction Kinetics of Aluminous Minerals in Soils

  • Chapter
Soil Acidity

Abstract

The use of chemical thermodynamics and reaction kinetics is necessary to quantitatively model the transformation of aluminous minerals and their dissolved constituents in soils and other geochemical systems. Soils are thermodynamically open systems subject to atmospheric and biological forces and do not attain overall thermodynamic equilibrium with respect to either mass or time. However, local or partial equilibrium conditions may persist for particular minerals and their dissolved constituents. Igneous and metamorphic primary minerals break down chemically to yield disordered gels or colloids and constituent ions, which can then reorganize or precipitate to form more stable hydrous oxides, silicates, carbonates or other mineral species. Naturally-occurring iron and aluminum hydrous oxides and kaolin clays, abundant in highly weathered soils, are commonly believed to be the ultimate, stable end products of weathering reactions, but usually are thermodynamically metastable with respect to more perfectly ordered, synthetic specimens. Thermodynamic stability is no guaranty of mineral persistence; with sufficient time, even the most perfectly crystallized, stable mineral will yield to the solubilizing assault of undersaturated surface waters. All of the dissolution and precipitation reactions of soil minerals are driven by energy differences in the thermodynamic stabilities of reactants and products, and the velocities (or kinetics) of such reactions are regulated by variables of the hydrogeochemical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. Am J Sci 282:237–285

    Article  CAS  Google Scholar 

  • Apps JA, Neil JM, Jun C-H (1987) Thermochemical properties of gibbsite, boehmite, diaspore and the aluminate ion between 0 and 350°C. Berkeley Lab Rep LBL-21482, Berkeley, California (draft copy)

    Google Scholar 

  • April R, Newton R, Coles LT (1986) Chemical weathering in two Adirondack watersheds: past and present-day rates. Geol Soc Am Bull 97:1232–1238

    Article  CAS  Google Scholar 

  • Bassett RL, Kharaka YK, Langmuir D (1979) Critical review of the equilibrium constants for kaolinite and sepiolite. In: Jenne EA (ed) Chemical modeling in aqueous systems. ACS Symp Ser 93, Am Chem Soc, Washington DC, pp 389–400

    Chapter  Google Scholar 

  • Bloom PR (1983) The kinetics of gibbsite dissolution in nitric acid. Soil Sci Soc Am J 47:164–168

    Article  CAS  Google Scholar 

  • Bloom PR, Weaver RM (1982) Effect of the removal of reactive surface material on the solubility of synthetic gibbsites. Clays Clay Miner 30:281–286

    Article  CAS  Google Scholar 

  • Bourrie G (1982) Geochemistry of spring waters — seasonal variations and aluminium control. In: van Olphen H, Veniale F (eds) Int Clay Conf 1981, Dev Sediment, Elsevier, Amst 35:459–473

    Google Scholar 

  • Chou L, Wollast R (1985) Steady state kinetics and dissolution mechanisms of albite. Am J Sci 285:963–993

    Article  CAS  Google Scholar 

  • Churchman GJ, Jackson ML (1976) Reaction of montmorillonite with aqueous solutions: solute activity control by a secondary phase. Geochim Cosmochim Acta 40:1251–1259

    Article  CAS  Google Scholar 

  • Cronan CS, Walker WJ, Bloom PR (1986) Predicting aqueous aluminum concentrations in natural waters. Nature (Lond) 324:140–143

    Article  CAS  Google Scholar 

  • Driscoll CT, Baker JP, Bisogni JJ, Schofield CL (1984) Aluminum speciation and equilibria in dilute acidic surface waters of the Adirondack region of New York State. In: Bricker OP (ed) Geological aspects of acid deposition. Butterworth, Boston, pp 55–75

    Google Scholar 

  • Fong D-W, Grunwald E (1969) Kinetic study of proton exchange between the (math) ion and water in dilute acid. Participation of water molecules in proton transfer. J Am Chem Soc 91:2413–2422

    Article  CAS  Google Scholar 

  • Frink CR, Peech M (1962) The solubility of gibbsite in aqueous solutions and soil extracts. Soil Sci Soc Am Proc 26:346–347

    Article  CAS  Google Scholar 

  • Furrer G, Stumm W (1986) The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim Cosmochim Acta 50:1847–1860

    Article  CAS  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper and Row, NY, Hagerstown Lond

    Google Scholar 

  • Gayer KH, Thompson LC, Zajicek OT (1958) The solubility of aluminum hydroxide in acidic and basic media at 25°C. Can J Chem 36:1268–1271

    Article  CAS  Google Scholar 

  • Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim Cosmochim Acta 48:2405–2432

    Article  CAS  Google Scholar 

  • Hem JD, Lind CJ (1974) Kaolinite synthesis at 25 °C. Science 184:1171–1173

    Article  PubMed  CAS  Google Scholar 

  • Hem JD, Roberson CE (1967) Form and stability of aluminum hydroxide complexes in dilute solution. US Geol Surv Water Supply Pap 1827-A

    Google Scholar 

  • Hemingway, BS (1982) Gibbs free energies of formation for bayerite, nordstrandite, Al(OH)2+, and (math), aluminum mobility, and the formation of bauxites and laterites. In: Saxena SK (ed) Advances in physical geochemistry, Vol 2. Springer, Berlin Heidelberg New York, pp 285–316

    Chapter  Google Scholar 

  • Holdren GR, Adams JE (1982) Parabolic dissolution kinetics of silicate minerals: an artifact of nonequilibrium precipitation processes? Geology 10:186–190

    Article  CAS  Google Scholar 

  • Holmes LP, Cole DL, Eyring EM (1968) Kinetics of aluminum ion hydrolysis in dilute solutions. J Phys Chem 72:301–304

    Article  CAS  Google Scholar 

  • Hooper RP, Shoemaker Ca (1985) Aluminum mobilization in an acidic headwater stream: temporal variation and mineral dissolution disequilibria. Science 229:463–465

    Article  PubMed  CAS  Google Scholar 

  • Hsu PH (1977) Aluminum hydroxides and oxyhydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am, Madison, Wisconsin, pp 99–143

    Google Scholar 

  • Hsu PH, Bates TF (1964) Formation of X-ray amorphous and crystalline aluminum hydroxides. Miner Mag 33:749–768

    Article  CAS  Google Scholar 

  • Johnson NM, Driscoll CT, Eaton JS, Likens GE, McDowell WH (1981) ‘Acid rain’, dissolved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Geochim Cosmochim Acta 45:1421–1437

    Article  CAS  Google Scholar 

  • Keller WD (1978) Diaspore recrystallized at low temperature. Am Miner 63:326–329

    Google Scholar 

  • Keller WD, Pickett EE, Reesman AL (1966) Elevated dehydroxylation temperature of the Keokuk geode kaolinite — a possible reference mineral. In: Heller I, Weiss A (eds) Proc Int Clay Conf 1966, Vol I. Isr Prog Sci Transi, Jerusalem, pp 75–85

    Google Scholar 

  • Kittrick JA (1966a) The free energy of formation of gibbsite and (math) from stability measurements. Soil Sci Soc Am Proc 30:595–598

    Article  CAS  Google Scholar 

  • Kittrick JA (1966b) Free energy of formation of kaolinite from solubility measurements. Am Miner 51:1457–1466

    CAS  Google Scholar 

  • Kittrick JA (1969) Soil minerals in the Al2O3-SiO2-H2O system and a theory of their formation. Clays Clay Miner 17:157–167

    Article  CAS  Google Scholar 

  • Kittrick JA (1970) Precipitation of kaolinite at 25°C and 1 atm. Clays Clay Miner 18:261–267

    Article  CAS  Google Scholar 

  • Kittrick JA (1973) Mica-derived vermiculites as unstable intermediates. Clays Clay Miner 21:479–488

    Article  CAS  Google Scholar 

  • Knauss KG, Wolery TJ (1986) Dependence of albite dissolution kinetics on pH and time at 25 °C and 70°C. Geochim Cosmochim Acta 50:2481–2497

    Article  CAS  Google Scholar 

  • Laidler KJ, Meiser JH (1982) Physical chemistry. Cummings, Menlo Park, California

    Google Scholar 

  • Lin F-C, Clemency CV (1981) The kinetics of dissolution of muscovites at 25 °C and 1 atm CO2 partial pressure. Geochim Cosmochim Acta 45:571–576

    Article  CAS  Google Scholar 

  • Linares J, Huertas F (1971) Kaolinite: synthesis at low temperature. Science 171:896–897

    Article  PubMed  CAS  Google Scholar 

  • Lippmann F (1982) The thermodynamic status of clay minerals. In: van Olphen H, Veniale F (eds) Int Clay Conf 1981, Dev Sediment, Elsevier, Amst 35:475–485

    Google Scholar 

  • Mackenzie RC, Meldau R, Gard JA (1962) The aging of sesquioxide gels. II. Alumina gels. Miner Mag 33:145–157

    Article  CAS  Google Scholar 

  • Mattigod SV, Sposito G (1978) Improved method for estimating the standard free energies of formation (math) of smectites. Geochim Cosmochim Acta 42:1753–1762

    Article  CAS  Google Scholar 

  • May HM, Helmke PA, Jackson ML (1979) Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25 °C. Geochim Cosmochim Acta 43:861–868

    Article  CAS  Google Scholar 

  • May HM, Kinniburgh DG, Helmke PA, Jackson ML (1986) Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals. Geochim Cosmochim Acta 50:1667–1677

    Article  CAS  Google Scholar 

  • Miller RJ (1965) Mechanism for hydrogen to aluminum transformations in clays. Soil Sci Soc Am Proc 29:36–39

    Article  CAS  Google Scholar 

  • Miller WR, Drever JI (1977) Chemical weathering and related controls on surface water chemistry in the Absaroka Mountains, Wyoming. Geochim Cosmochim Acta 41:1693–1702

    Article  CAS  Google Scholar 

  • Nielsen AE (1964) Kinetics of precipitation. Macmillan, NY

    Google Scholar 

  • Nordstrom DK (1982) The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K. Geochim Cosmochim Acta 46:681–692

    Article  CAS  Google Scholar 

  • Nordstrom DK, Ball JW (1986) The geochemical behavior of aluminum in acidified surface waters. Science 232:54–56

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom DK, May HM (1989) Aqueous equilibrium data for mononuclear aluminum species. In: Sposito G (ed) The environmental chemistry of aluminum. CRC Press, Boca Raton, Florida, pp 29–53

    Google Scholar 

  • Novak I, Cicel B (1978) Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition. Clays Clay Miner 26:341–344

    Article  CAS  Google Scholar 

  • Osthaus BB (1954) Chemical determination of tetrahedral ions in nontronite and montmorillonite. In: Swineford A, Plummer N (eds) Proc 2nd Natl Conf Clays Clay Miner, Publ 327. Natl Acad Sci Natl Res Counc, Washington DC, pp 404–417

    Google Scholar 

  • Osthaus BB (1956) Kinetic studies on montmorillonites and nontronite by the acid-dissolution technique. In: Swineford A (ed) Proc 4th Natl Conf Clays Clay Miner, Publ 456. Natl Acad Sci Natl Res Counc, Washington DC, pp 301–321

    Google Scholar 

  • Paces T (1973) Steady-state kinetics and equilibrium between ground water and granitic rock. Geochim Cosmochim Acta 37:2641–2663

    Article  CAS  Google Scholar 

  • Paces T (1978) Reversible control of aqueous aluminum and silica during the irreversible evolution of natural waters. Geochim Cosmochim Acta 42:1487–1493

    Article  CAS  Google Scholar 

  • Paces T (1983) Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochim Cosmochim Acta 47:1855–1863

    Article  CAS  Google Scholar 

  • Paces T (1984) Mass-balance approach to the understanding of geochemical processes in aqueous systems. In: Eriksson E (ed) Hydrochemical balances of freshwater systems. Int Assoc Hydrol Sci 150:223–235

    Google Scholar 

  • Parks GA (1972) Free energies of formation and aqueous solubilities of aluminum hydroxides and oxide hydroxides at 25°C. Am Miner 57:1163–1189

    CAS  Google Scholar 

  • Raupach M (1963a) Solubility of simple aluminum compounds expected in soils. I. Hydroxides and oxyhydroxides. Aust J Soil Res 1:28–35

    Article  CAS  Google Scholar 

  • Raupach M (1963 b) Solubility of simple aluminum compounds expected in soils. II. Hydrolysis and conductance of Al3+. Aust J Soil Res 1:36–45

    Article  CAS  Google Scholar 

  • Richburg JS, Adams F (1970) Solubility and hydrolysis of aluminum in soil solutions and saturated-paste extracts. Soil Sci Soc Am Proc 34:728–734

    Article  CAS  Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452 (1979 reprint with corrections)

    Google Scholar 

  • Ross GJ, Turner RC (1971) Effect of different anions on the crystallization of aluminum hydroxide in partially neutralized aqueous aluminum salt systems. Soil Sci Soc Am Proc 35:389–392

    Article  CAS  Google Scholar 

  • Schoen R, Roberson CE (1970) Structures of aluminum hydroxide and geochemical implications. Am Miner 55:43–77

    CAS  Google Scholar 

  • Seip HM, Muller L, Naas A (1984) Aluminum speciation: comparison of two spectrophotometric analytical methods and observed concentrations in some acidic aquatic systems in southern Norway. Water Air Soil Pollut 23:81–95

    Article  CAS  Google Scholar 

  • Singh SS (1974) The solubility product of gibbsite at 15°, 25°, and 35°C. Soil Sci Soc Am Proc 38:415–417

    Article  CAS  Google Scholar 

  • Singh SS (1976) Chemical equilibrium and chemical thermodynamic properties of gibbsite. Soil Sci 121:332–336

    Article  CAS  Google Scholar 

  • Singh SS (1982) The formation and coexistence of gibbsite, boehmite, alumina and alunite at room temperature. Can J Soil Sci 62:327–332

    Article  CAS  Google Scholar 

  • Smith RW, Hem JD (1972) Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions. US Geol Surv Water Supply Pap 1827-D

    Google Scholar 

  • Storr H, Murray HH (1986) Well-ordered kaolinite in siderite concretions from the Brazil formation, western Indiana. Clays Clay Miner 34:689–691

    Article  CAS  Google Scholar 

  • Stumm W (1986) Coordinative interactions between soil solids and water — an aquatic chemist’s point of view. Geoderma 38:19–30

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. Wiley Intersci, NY

    Google Scholar 

  • Sullivan TJ, Christophersen N, Muniz IP, Seip HM, Sullivan PD (1986) Aqueous aluminum chemistry response to episodic increases in discharge. Nature (Lond) 323:324–327

    Article  CAS  Google Scholar 

  • Tardy Y, Fritz B (1981) An ideal solid solution model for calculating solubility of clay minerals. Clay Miner 16:361–373

    Article  CAS  Google Scholar 

  • Tardy Y, Garrels RM (1974) A method of estimating the Gibbs free energies of formation of layer silicates. Geochim Cosmochim Acta 38:1101–1116

    Article  CAS  Google Scholar 

  • Turner RC, Ross GJ (1970) Conditions in solution during the formation of gibbsite in dilute Al salt solutions. IV. Effect of CI concentration and temperature and a proposed mechanism for gibbsite formation. Can J Chem 48:723–729

    Article  CAS  Google Scholar 

  • Turner RC, Sulaiman W (1971) Kinetics of reactions of 8-quinolinol and acetate with hydroxy-aluminum species in aqueous solutions. I. Polynuclear hydroxyaluminum cations. Can J Chem 49:1683–1687

    Article  CAS  Google Scholar 

  • Tsuzuki Y, Kawabe I (1983) Polymorphic transformations of kaolin minerals in aqueous solutions. Geochim Cosmochim Acta 47:59–66

    Article  CAS  Google Scholar 

  • Valeton I (1972) Bauxites. Developments in soil science, Vol 1. Elsevier, Amst

    Google Scholar 

  • Van Oosterwyck-Gastuche MC, La Iglesia A (1978) Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process. Clays Clay Miner 26:409–417

    Article  Google Scholar 

  • Velbel MA (1985) Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge. Am J Sci 285:904–930

    Article  CAS  Google Scholar 

  • Violante A, Violante P (1980) Influence of pH, concentration, and chelating power of organic anions on the synthesis of aluminum hydroxides and oxyhydroxides. Clays Clay Miner 28:425–434

    Article  CAS  Google Scholar 

  • Wright RF, Gjessing E, Semb A, Sletaune B (1986) RAIN project: data report 1983–1985 (Acid rain research report 10/1986). Norw Inst Water Res, Oslo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

May, H.M., Nordstrom, D.K. (1991). Assessing the Solubilities and Reaction Kinetics of Aluminous Minerals in Soils. In: Ulrich, B., Sumner, M.E. (eds) Soil Acidity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74442-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74442-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74444-0

  • Online ISBN: 978-3-642-74442-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics