Skip to main content
Log in

Das augenmuskelsystem der stubenfliege musca domestica

I. Analyse der „clock-spikes” und ihrer Quellen

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

  1. 1.

    It is possible to record spontaneously occurring impulses in the housefly's optic lobe region. These closely resemble “clock-spikes”, as described for Calliphora by Kuiper and Leutscher-Hazelhoff (1965). The repetition rate of these impulses—here called “C-spikes”—is about 45/s at 20° C and increases with temperature. Between 15 and 35° C the temperature coefficient of the repetition rate is close to Q 10=2. At constant temperature the mean rate is constant for many hours, the individual intervals appear to be gaussian-distributed about the mean interval \(\bar \tau\). The standard deviation of the interval lengths in samples of >10000 impulses is approximately ±2.5% of the mean. The fluctuation corresponds to a slight modulation of the mean spike frequency by a noise signal, comprising slow as well as fast components.

  2. 2.

    The time course of extracellularly recorded spikes in combination with evidence from simultaneous recordings at different sites shows that typical C-spikes are produced by the subsequent activity of at least two distinct sources: “Prespikes” originate in the midbrain and are centrifugally conducted with about 2 m/s at room temperature to a peripheral site of C-spike-activity, where they induce a strictly event-correlated impulse activity of a “postspike” source. Decapitation shows that all elements that are necessary to produce and to maintain the regular C-spike activity are located within the head. Under constant conditions no interaction is observed between C-spike sources on the left and right side of the head. Intracellular recordings show that the membranes of the postspike sources on either side are of the electrically unexcitable type. Each of the postspike sources is formed by a cluster of at least two cells. Electrophysiological localization experiments indicate that the postspike sources are located outside of the optic lobes, but close to the lower frontal margin of the left-and right-hand medulla.

  3. 3.

    The sources of C-spike activity could be identified by histological localization of the recording sites. The anatomical correlate of the electrophysiologically determined C-spike system has been reconstructed by means of silver impregnated serial sections: In the lateral perikaryon layer on either side of the subesophageal ganglion lies a single large motoneurone, which is spontaneously producing the regular impulses, most probably during the entire life time of the fly. These impulses are centrifugally conducted along a thin peripheral nerve, which only contains a single motor axon of 6 μm diameter. The nerve runs to a very small muscle, consisting of 14–20 tubular skeletal muscle fibres of 7–10 μm diameter. These fibres are innervated by numerous grape-like neuromuscular endings. From this unineuronal, multiterminal innervation it is concluded that the muscle acts as a functional unit. Extracellular and intracellular recordings under microscopic observation prove the identity of the muscle fibres with the source of the postspikes.

  4. 4.

    The muscle has not been previously described for Musca. It is shown that one end of the muscle is inserted at the inner margin of the orbital ridge, i.e. at the base of the frontal ommatidia in the vicinity of the equator of the compound eye. The other end is fixed to an apodeme which originates near the foramen occipitale on the ventral occipital ridge and which most probably is homologous with the tentorium of other insects. Hence the muscle is denoted as Musculus orbitotentorialis. Similar muscles with comparable insertions are found in Calliphora and Drosophila. The orbito-tentorial muscle also exists in Eristalis, where the tentorium is well developed. Here the muscle inserts on the anterior tentorial arm and at the inner margin of the orbital ridge. This muscle also produces continuously regular spikes.

  5. 5.

    The structure of the head skeleton of Musca shows that the tentorial insertion of the muscle is relatively rigid. Since antagonistic muscles are obviously missing, it is concluded that the orbito-tentorial muscle acts against the elastic forces of the eye tissue and of the orbital skeleton. It is conceivable that the muscular action causes displacements of the optic axes of the visual elements in the compound eyes. The physiological meaning of these displacements is still obscure and deserves further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Andersson-Cedergren, Ebba: Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fiber as revealed by three-dimensional reconstructions from serial sections. J. Ultrastruct. Res. 2, Suppl. 1, 1–191 (1959).

    Google Scholar 

  • Ballintijn, C. M.: Experimental production of very small lesions by electrocoagulation. Experientia (Basel) 17, 412 (1961)

    Article  CAS  Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Shaw, T. I.: The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J. Physiol. (Lond.) 164, 355–374 (1962).

    Article  CAS  Google Scholar 

  • Barlow, H. B.: Stabilized retinal images. In: W. Reichardt (ed.), Processing of optical data by organisms and machines, p. 431–441. London: Academic Press 1969.

    Google Scholar 

  • Barneveld, H. H. v., Sinnema, T.: Siehe Leutscher-Hazelhoff u. Kuiper, 1966.

  • Beránek, R., Miller, P. L.: The action of iontophoretically applied glutamate on insect muscle fibres. J. exp. Biol. 49, 83–93 (1968).

    Google Scholar 

  • Bishop, L. G., Keehn, D. G., McCann, G. D.: Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31, 509–525 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Boschek, C. B.: On the structure and synaptic organization of the first optic ganglion in the fly. Z. Naturforsch. 25b, 560 (1970).

    Article  Google Scholar 

  • Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-Lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Bullock, T. H., Horridge, G. A.: Structure and function in the nervous systems of invertebrates. London: Freeman & Co. 1965.

    Google Scholar 

  • Burkhardt, D., Motte, I. de la, Seitz, G.: Physiological optics of the compound eye of the blowfly. In: C. G. Bernhard (ed.), The functional organization of the compound eye, p. 51–62. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Burtt, E. T., Patterson, J. A.: Internal muscle in the eye of an insect. Nature (Lond.) 228, 183–184 (1970).

    Article  CAS  Google Scholar 

  • Cerf, J., Grundfest, H., Hoyle, G., McCann, F. V.: The nature of electrical responses of doubly-innervated insect muscle fibers. Biol. Bull. 113, 337–338 (1957).

    Google Scholar 

  • Chen, J. S., Chen, M. G.: Modifications of the Bodian technique applied to insect nerves. Stain Technol. 44, 50–52 (1969).

    PubMed  CAS  Google Scholar 

  • Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool. 92, 465–539 (1909).

    Google Scholar 

  • Dudel, J., Orkand, R. K.: Spontaneous potential changes at crayfish neuromuscular junctions. Nature (Lond.) 186, 476–477 (1960).

    Article  CAS  Google Scholar 

  • Eckert, M.: Hell-Dunkel-Adaptation in aconen Appositionsaugen der Insekten. Zool. Jb. Physiol. 74, 102–120 (1968).

    Google Scholar 

  • Fatt, P., Katz, B.: Some observations on biological noise. Nature (Lond.) 166, 597–598 (1950a).

    Article  CAS  Google Scholar 

  • — Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  • — Distributed “end-plate-potentials” of crustacean muscle fibres. J. exp. Biol. 30, 433–439 (1953b).

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l'œil composé de Drosophila. Kybernetik 8, 1–13 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong, Clara, Porter, K. R.: Sarcolemmal invaginations, constituting the T-system in fish muscle fibers. J. Cell Biol. 22, 675–696 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gesteland, R. C., Howland, B., Lettvin, J. Y., Pitts, W. H.: Comments on microelectrodes. Proc. IRE 47, 1856–1862 (1959).

    Article  Google Scholar 

  • Götz, K. G.: Movement discrimination in insects. In: W. Reichardt (ed.), Processing of optical data by organisms and machines, p. 494–509. London: Academic Press 1969.

    Google Scholar 

  • Heisenberg, M.: Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. Zur Publikation eingereicht: J. exp. Biol. (1971).

  • Hengstenberg, R.: Das Augenmuskelsystem der Stubenfliege Musca domestica. II. Untersuchungen zur Funktion. In Vorbereitung (Kybernetik, 1971).

  • Hoyle, G.: Neural control of skeletal muscle. In: M. Rockstein (ed.), The physiology of insecta, vol. II, p. 407–449. London: Academic Press 1965.

    Google Scholar 

  • Huxley, A. F.: The links between excitation and contraction. Proc. roy. Soc. B 160, 486–488 (1964).

    Article  CAS  Google Scholar 

  • Huxley, H. E.: Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature (Lond.) 202, 1067–1071 (1964).

    Article  CAS  Google Scholar 

  • Jahromi, S. S., Atwood, H. L.: Structural features of muscle fibres in the cockroach leg. J. Insect Physiol. 15, 2255–2262 (1969a).

    Article  Google Scholar 

  • Katz, B., Miledi, R.: A study of spontaneous miniature potentials in spinal motoneurons. J. Physiol. (Lond.) 168, 389–422 (1963).

    Article  CAS  Google Scholar 

  • — Propagation of electric activity in motor nerve terminals. Proc. roy. Soc. B 161, 453–482 (1965a).

    Article  CAS  Google Scholar 

  • — The measurement of synaptic delay and time course of acetylcholine release at the neuromuscular junction. Proc. roy. Soc. B 161, 483–495 (1965b).

    Article  CAS  Google Scholar 

  • — The effect of temperature on the synaptic delay at the neuromuscular junction. J. Physiol. (Lond.) 181, 656–670 (1965d).

    Article  CAS  Google Scholar 

  • Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27, 137A (1965).

    Google Scholar 

  • Kirschfeld, K.: Quantitative Beziehungen zwischen Lichtreiz und monophasischem Elektroretinogramm bei Rüssel-käfern. Z. vergl. Physiol. 44, 371–413 (1961).

    Article  Google Scholar 

  • — Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).

    Article  CAS  PubMed  Google Scholar 

  • — Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Kuiper, J. W.: The optics of the compound eye. Symp. Soc. exp. Biol. 16, 58–61 (1962).

    Google Scholar 

  • — Leutscher-Hazelhoff, J. T.: High-precision repetitive firing in the insect optic lobe and a hypothesis for its function in object location. Nature (Lond.) 206, 1158–1160 (1965).

    Article  CAS  Google Scholar 

  • — Linear and nonlinear responses from the compound eye of Calliphora erythrocephala. Cold. Spr. Harb. Symp. quant. Biol. 30, 419–428 (1965).

    Article  CAS  Google Scholar 

  • Leutscher-Hazelhoff, J. T., Kuiper, J. W.: Clock-spikes in the Calliphora optic lobe and a hypothesis for their function in object location. In: C. G. Bernhard (ed.), The functional organization of the compound eye, p. 483–492. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Lorente de Nó, R.: A study of nerve physiology. New York: Rockefeller Institute 1947.

    Google Scholar 

  • Lowne, B. T.: The anatomy, physiology, morphology and development of the blowfly (Calliphora erythrocephala). R. H. Porter, London (1890-92).

    Google Scholar 

  • Lüdtke, H.: Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca). Z. vergl. Physiol. 35, 129–152 (1953).

    Article  Google Scholar 

  • Mauro, A.: Properties of thin generators pertaining to electrophysiological potentials in volume conductors. J. Neurophysiol. 23, 132–143 (1960).

    Article  Google Scholar 

  • Meyer, G. F.: Vergleichende Untersuchungen mit der supravitalen Methylenblaufärbung am Nervensystem wirbelloser Tiere. Zool. Jb., Anat. 74, 339–400 (1955).

    Google Scholar 

  • Osborne, M. P.: The fine structure of neuromuscular junctions in the segmental muscle of the blowfly larva. J. Insect Physiol. 13, 827–833 (1967).

    Article  Google Scholar 

  • Peachey, L. D., Porter, K. R.: Intracellular impulse conduction in muscle cells. Science 129, 721–722 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Rodieck, R. W., Kiang, N. Y.-S., Gerstein, G. L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2, 351–368 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichardt, W.: Movement perception in insects. In: W. Reichardt (ed.), Processing of optical data by organisms and by machines, p. 465–493. London: Academic Press 1969.

    Google Scholar 

  • Schiemenz, H.: Vergleichend funktionell-anatomische Untersuchungen der Kopfmuskulatur von Theobaldia und Tubifera (Diptera, Culicidae und Syrphidae). Dtsch. ent. Z., N. F. 4, 268–331 (1957).

    Article  Google Scholar 

  • Schneider, L., Langer, H.: Die Feinstruktur des Überganges zwischen Kristallkegel und Rhabdomeren im Facettenauge von Calliphora. Z. Naturforsch. 21b, 196–197 (1966).

    Article  Google Scholar 

  • Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala. Z. vergl. Physiol. 59, 205–231 (1968).

    Google Scholar 

  • Smith, D. S.: The organization of flight muscle fibers in the Odonata. J. Cell Biol. 28, 109–126 (1966b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • — The structure of intersegmental muscle fibres in an insect, Periplaneta americana L. J. Cell Biol. 29, 449–459 (1966c).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth, T., Hoyle, G.: Unveröffentlicht; aus Hoyle, G. (1965). In: M. Rockstein (ed.), The physiology of insecta, vol. II, p. 407–449. London: Academic Press 1965.

    Google Scholar 

  • Stein, R. B.: The frequency of nerve action potentials generated by applied currents. Proc. roy. Soc. B 167, 64–86 (1967).

    Article  CAS  Google Scholar 

  • Tätigkeitsbericht: Die Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 1. Jan. 1968–31. Dez. 1969. Naturwissenschaften 57, 620–622 (1970).

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res. 13, 1–33 (1965).

    Article  PubMed  Google Scholar 

  • — Melamed, J.: Electron microscope observations on the peripheral and intermediate retinas of dipterans. In: C. G. Bernhard (ed.), The functional organization of the compound eye, p. 339–362. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Tschiriew, S.: Sur les terminaisons nerveuses dans les mucles striés. Arch. Physiol. norm. et path. 6 (1879).

  • Usherwood, P. N. R.: The nature of “slow” and “fast” contractions in the coxal muscles of the cockroach. J. Insect Physiol. 8, 31–52 (1962b).

    Article  Google Scholar 

  • — Spontaneous miniature potentials from insect muscle fibres. J. Physiol. (Lond.) 169, 149–160 (1963).

    Article  CAS  Google Scholar 

  • Walcott, B.: Movement of retinula cells in insect eyes on light adaptation. Nature (Lond.) 223, 971–972 (1969).

    Article  CAS  Google Scholar 

  • Yarbus, A. L.: Eye movements and vision. New York 1967.

  • Zettler, F.: Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor von Calliphora erythrocephala. Z. vergl. Physiol. 64, 432–449 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zahlreiche wertvolle Diskussionen verdanke ich Herrn Dr. K. G. Götz, Herrn Prof. Dr. W. Reichardt, Herrn Dr. V. Braitenberg und Herrn Dr. K. Kirschfeld. Außerdem danke ich Herrn Dr. J. A. Campos-Ortega und Herrn C. B. Boschek für die Anfertigung der elektronenmikroskopischen Präparate und Aufnahmen, Frl. W. Barke und Frl. E. Hartwieg für die Herstellung der lichtoptischen Präparate, Frl. B. Köhler für ihre Hilfe bei der Auswertung der Experimente und Herrn E. Freiberg für die Fertigstellung der Abbildungen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengstenberg, R. Das augenmuskelsystem der stubenfliege musca domestica. Kybernetik 9, 56–77 (1971). https://doi.org/10.1007/BF00270852

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270852

Navigation