Skip to main content

Cross Polarization/Magic Angle Spinning Nuclear Magnetic Resonance (CP/MAS NMR) Spectroscopy

  • Chapter
Methods in Lignin Chemistry

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

Standard techniques for solution-state 13C NMR seldom yield useful spectra when applied to solid samples as the signals are usually too weak and broad. However, the problems with weak signals can be largely overcome by using cross polarization pulse sequences (Pines et al. 1973), and the broad linewidths can be sharpened by spinning samples at the “magic angle” of 54.7° relative to the applied magnetic field (Schaefer and Stejskal 1976). The first CP/MAS spectrum of solid wood showed a resonance band assigned to lignin (Schaefer and Stejskal 1976), but there was a gap of several years before resolution improved sufficiently to reveal detailed structural information about solid lignin (Bartuska et al. 1980). The number of research groups using the technique then increased rapidly as commercial CP/MAS NMR equipment became available and wood scientists began to recognize the advantages of being able to characterize lignin in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barron PF, Frost PL, Doimo L, Kennedy MJ (1985) 13C-CP/MAS NMR examination of some Australian hardwoods and their chemical and biochemical residues. J Macromol Sci Chem A22: 303–322

    Google Scholar 

  • Bartuska VJ, Maciel GE, Bolkers HI, Fleming BI (1980) Structural studies of lignin isolation procedures by l3C NMR. Holzforschung 34: 214–217

    Article  CAS  Google Scholar 

  • Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA (1981) Quantitative chemical composition of materials such as humic soils, lignins, and coals by high-resolution carbon- 13 NMR. J Magn Reson 45: 173–176

    Article  Google Scholar 

  • Gerasimowicz WV, Hicks KB, Pfeffer PE (1984) Evidence for the existence of associated lignin-carbohydrate polymers as revealed by carbon-13 CPMAS solid-state NMR spectroscopy. Macromolecules 17: 2597–2603

    Article  CAS  Google Scholar 

  • Gerstein BC, Dybowski CR (1985) Transient techniques in NMR of solids: an introduction to theory and practice. Academic Press, Orlando, 295 pp

    Google Scholar 

  • Hatcher PG (1987) Chemical structural studies of natural lignin by dipolar dephased solid-state 13C nuclear magnetic resonance. Org Geochem 11: 31–39

    Article  CAS  Google Scholar 

  • Hatfield GR, Maciel GE, Erbatur O, Erbatur G (1987) Qualitative and quantitative analysis of solid lignin samples by carbon-13 nuclear magnetic resonance spectrometry. Anal Chem 59: 172–179

    Article  CAS  Google Scholar 

  • Haw JF, Maciel GE, Schroeder HA (1984) Carbon-13 nuclear magnetic resonance spectrometric study of of wood pulping with cross polarization and magic-angle spinning. Anal Chem 56: 1323–1329

    Article  CAS  Google Scholar 

  • Hemmingson J A, Newman RH (1985) A CP/MAS,3C NMR study of the effect of steam explosion processes on wood composition and structure. J Wood Chem Technol 5: 159–188

    Article  CAS  Google Scholar 

  • Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73: 6021–6030

    Article  CAS  Google Scholar 

  • Himmelsbach DS, Barton FE, Windham WR (1983) Comparison of carbohydrate, lignin, and protein ratios between grass species by cross polarization-magic angle spinning carbon-13 nuclear magnetic resonance. J Agric Food Chem 31: 401–404

    Article  CAS  Google Scholar 

  • Kolodziejski W, Frye JS, Maciel GE (1982) Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood. Anal Chem 54: 1419–1424

    Article  CAS  Google Scholar 

  • Leary GJ, Morgan KR, Newman RH (1987) Solid state carbon-13 nuclear magnetic resonance study of Pinus radiata wood. Appita 40: 181–184

    CAS  Google Scholar 

  • Leary GJ, Newman RH, Morgan KR (1986) A carbon-13 nuclear magnetic resonance study of chemical processes involved in the isolation of Klason lignin. Holzforschung 40: 267–272

    Article  CAS  Google Scholar 

  • Maciel GE, Haw JF, Smith DH, Gabrielson BC, Hatfield GR (1985) Carbon-13 nuclear magnetic resonance of herbaceous plants and their components, using cross polarization and magic-angle spinning. J Agric Food Chem 33: 185–191

    Article  CAS  Google Scholar 

  • Manders WF (1987) Solid-state l3C NMR determination of the syringyl/guaiacyl ratio in hardwoods. Holzforschung 41: 13–18

    Article  CAS  Google Scholar 

  • Mehring M (1983) Principles of high resolution NMR in solids. 2nd edn. Springer, Berlin Heidelberg New York, 342 pp

    Google Scholar 

  • Morgan KR, Newman RH (1987) Estimation of the tannin content of eucalypts and other hardwoods by carbon-13 nuclear magnetic resonance. Appita 40: 450–454

    CAS  Google Scholar 

  • Newman RH (1987) Effects of finite preparation pulse power on carbon-13 cross-polarization NMR spectra of heterogeneous samples. J Magn Reson 72: 337–340

    Article  CAS  Google Scholar 

  • Newman RH (1989) Carbon-13 NMR studies of lignin in solid samples - a review. Chemistry Division Report, DSIR, New Zealand.

    Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59: 569–589

    Article  CAS  Google Scholar 

  • Schaefer J, Stejskal EO (1976) Carbon-13 NMR of polymers spinning at the magic angle. J Am Chem Soc 98: 1031–1032

    Article  CAS  Google Scholar 

  • Schaefer J, Stejskal EO, Sefcik MD, McKay RA (1981) Applications of high-resolution 13C and,5N NMR of solids. Philos Trans R Soc Lond A299. 593–608

    Article  CAS  Google Scholar 

  • Sterk H, Sattler W, Esterbauer H (1987) Investigations of lignocellulosic materials by the carbon-13 NMR CP-MAS method. Carbohydr Res 164: 85–95

    Article  CAS  Google Scholar 

  • Tekely P, Vignon MR (1987) Proton Tj and T2 relaxation times of wood components using L3C CP/MAS NMR. J Polym Sci Part C: Polym Lett 25: 257–261

    Article  CAS  Google Scholar 

  • Veeman WS (1984) Carbon-13 chemical shift anisotropy. Prog NMR Spectrosc 16:193–235

    Google Scholar 

  • Willis JM, Herring FG (1986) Effect of water on the 13C CP/MAS NMR spectrum of white spruce wood. Macromolecules 20: 1554–1556

    Article  Google Scholar 

  • Willis JM, Jagannathan NR, Herring FG (1986) The potential of, 3C CP/MAS NMR in the study of kraft pulping kinetics. J Wood Chem Technol 6: 249–267

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leary, G.J., Newman, R.H. (1992). Cross Polarization/Magic Angle Spinning Nuclear Magnetic Resonance (CP/MAS NMR) Spectroscopy. In: Lin, S.Y., Dence, C.W. (eds) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74065-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74065-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74067-1

  • Online ISBN: 978-3-642-74065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics