Skip to main content

Isolated Stimulation of Glycolysis Following Traumatic Brain Injury

  • Conference paper
Intracranial Pressure VII

Abstract

Clinical investigators have postulated that head trauma causes cerebral metabolic derangement, as evidenced by the presence of CSF lactate and brain acidosis (DeSalles et al. 1986). Work in our laboratory (Unterberg et al. 1988) reported decreased tissue pH within 15 minutes following trauma that eventually normalizes. Post traumatic tissue acidosis has been reported to correlate tightly with increased brain lactate (McIntosh et al. 1987). We have also found (Inao et al. 1988) increased cerebrospinal fluid and brain tissue lactate at 15 minutes posttrauma. We hypothesized from these studies that the metabolic derangement responsible for cerebral lactic acidosis occurs within minutes of trauma. To investigate this hypothesis, we focused our investigation on the first 15 minutes following trauma and measured global cerebral blood flow, cerebral metabolic rate of oxygen utilization, cerebral metabolic rate of glucose utilization, and performed 31P magnetic resonance spectroscopy in traumatized, ventilated cats. Data was obtained immediately following trauma and serially for the first hour posttrauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen BJ, Unterberg AW, Clarke GD, Marmarou A (1988) Effect of post-traumatic hypoventilation on cerebral energy metabolism. J Neurosurg 68:601–607

    Article  PubMed  CAS  Google Scholar 

  • Benjamin AM, Verjee ZH (1980) Control of aerobic glycolysis in the brain in vitro. Neurochem Res 5:921–934

    Article  PubMed  CAS  Google Scholar 

  • Bricknell OL, Opie LH (1978) Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrythmias during reperfusion. Circ Res 43:102–115

    PubMed  CAS  Google Scholar 

  • Chapman AG, Meldrum BS, Siesjö BK (1977) Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem 28:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Davidheiser S, Joseph H, Davies RE (1984) Separation of aerobic glycolysis from oxidative metabolism and contractility in rat anococcygeus muscle. Am J Physiol 247:C335–341

    PubMed  CAS  Google Scholar 

  • DeSalles AAF, Kontos HA, Becker DP, Yang MS, Ward JD, Moulton R, Gruemer HD, Lutz H, Maset AL, Jenkins L, Marmarou A, Muizelaar R (1986) Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosug 65:615–624

    Article  CAS  Google Scholar 

  • DeSalles AAF, Muizelaar JP, Young HF (1987) Hyperglycemia, cerebrospinal fluid lactic acidosis, and cerebral blood flow in severely head injured patients. Neurosurg 21:45–50

    Article  CAS  Google Scholar 

  • DeWitt DS, Jenkins LW, Wei EP, Lutz H, Becker DP, Kontos HK (1986) Effects of fluid percussion brain injury on regional cerebral blood flow and pial arteriolar diameter. J Neurosurg 64:787–794

    Article  PubMed  CAS  Google Scholar 

  • Duckrow RB, LaManna JC, Rosenthal M, Levasseur JE, Patterson JL (1981) Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat. J Neurosurg 54:607–614

    Article  PubMed  CAS  Google Scholar 

  • Grootegoed JA, Oonk RB, Jansen R, van der Molen HJ (1986) Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells. J Reprod Fertil 77:109–118

    Article  PubMed  CAS  Google Scholar 

  • Hellstrand P, Jorup C, Lydrup ML (1984) O2 consumption, aerobic glycolysis and tissue phosphagen content during activation of the Na +/K+ pump in rat portal vein. Pflugers Arch 401:119–124

    Article  PubMed  CAS  Google Scholar 

  • Howse DC, Duffy TE (1975) Control of redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock-induced seizures. J Neurochem 24:935–940

    Article  PubMed  CAS  Google Scholar 

  • Howse DC, Caronna JJ, Duffey TE, Plum F (1974) Cerebral energy metabolism, pH, and blood flow during seizures in the cat. Am J Physiol 227(6):1444–1451

    PubMed  CAS  Google Scholar 

  • Hubschmann OR, Nathanson DC (1985) The role of calcium and cellular membrane dysfunction in experimental trauma and subarachnoid hemorrhage. J Neurosurg 62:698–703

    Article  PubMed  CAS  Google Scholar 

  • Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF (1988) Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg (in press)

    Google Scholar 

  • Julian FJ, Goldman DE (1962) The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol 46:297–313

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Cheung MK, Alves A, Becker DP (1988) Effects of experimental concussive brain injury on extracellular ion concentration on the hippocampus as monitored by microdialysis. AANS Scientific Program: 380 (abstract)

    Google Scholar 

  • Kirkpatrick JB, Bray JJ, Palmer SM (1972) Visualization of axoplasmic flow in vitro by Nomarski microscopy. Comparison to rapid flow or radioactive proteins. Brain Res 43:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lewelt W, Jenkins LW, Miller JD et al. (1980) Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain. J Neurosurg 53:500–511

    Article  PubMed  CAS  Google Scholar 

  • Lewis DV, Schuette WH (1975) Temperature dependence of potassium clearance in the central nervous system. Brain Res 99: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Lothman E, LaManna J, Cordingley G, Rosenthal M, Somjen G (1975) Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex ofcats. Brain Res 88:15–36

    Article  PubMed  CAS  Google Scholar 

  • Lynch RM, Paul RJ (1983) Compartmentalization of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science 222:1344–1346

    Article  PubMed  CAS  Google Scholar 

  • McDonald TF, Hunter EG, MacLeod DP (1971) Adenosinetriphosphate partition in cardiac muscle with respect to transmembrane electrical activity. Pflugers Arch 322:95–108

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Faden AI, Bendall MR, Vink R (1987) Traumatic brain injury in the rat: Alterations in brain lactate and pH as characterized by 1Hand 31P nuclear magnetic resonance. J Neurochem 49: 1530–1540

    Article  PubMed  CAS  Google Scholar 

  • Milito SJ, Raffin CN, Rosenthal M, Sick TJ (1988) Potassium ion homeostasis and mitochondrial redox activity in brain: Relative changes as indicators of hypoxia. J CBF and Metab 8:155–162

    CAS  Google Scholar 

  • Ochs S (1972) Fast transport of materials in mammalian nerve fibers. Science 176:252–260

    Article  PubMed  CAS  Google Scholar 

  • Ochs S, Hollingsworth D (1971) Dependence on fast axoplasmic transport in nerve on oxidative metabolism. J Neurochem 18:107–114

    Article  PubMed  CAS  Google Scholar 

  • Ochs S, Smith CB (1971) Fast axoplasmic transport in mammalian nerve in vitro after block of, glycolysis with iodoacetic acid. J Neurochem 18:833–843

    Article  PubMed  CAS  Google Scholar 

  • Paul RJ, Wuytack F, Raeymaekers L, Casteels R (1986) Association of an integrated glycolytic enzyme cascade with a smooth muscle plasma membrane fraction. Fed Proc 45(4):766

    Google Scholar 

  • Sacktor B, Wilson JE, Tiekert CG (1966) Regulation of glycolysis in brain, in situ, during convulsions. J Biol Chem 241(21):5071–5075

    PubMed  CAS  Google Scholar 

  • Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid percussion model of mechanical brain injury in the cat. J Neurosurg 45:520–534

    Article  Google Scholar 

  • Takahashi H, Manaka S, Sano K (1981) Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J Neurosurg 55:708–717

    Article  PubMed  CAS  Google Scholar 

  • Unterberg AW, Andersen BJ, Clarke GD, Marmarou A (1988) Cerebral energy metabolism following fluid percussion brain injury in cat. J Neurosurg 68:594–600

    Article  PubMed  CAS  Google Scholar 

  • Weiss J, Hiltbrand B (1985) Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75:436–447

    Article  PubMed  CAS  Google Scholar 

  • Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365:42–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersen, B.J., Marmarou, A. (1989). Isolated Stimulation of Glycolysis Following Traumatic Brain Injury. In: Hoff, J.T., Betz, A.L. (eds) Intracranial Pressure VII. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73987-3_149

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73987-3_149

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73989-7

  • Online ISBN: 978-3-642-73987-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics