Skip to main content

The Structure of the Ca2+ Channel: Photoaffinity Labeling and Tissue Distribution

  • Conference paper
The Calcium Channel: Structure, Function and Implications

Part of the book series: Bayer AG Centenary Symposium ((BAYER))

Abstract

Photoaffinity labeling is an important, extremely valuable tool for the characterization of pharmacological receptors. Radioactive photoaffinity probes allow, even in crude preparations with very low receptor densities, identification of the polypeptide(s) which bind the ligand. In general, the photoaffinity protection profile (obtained by adding unlabeled compounds interacting competitively or allosterically with the receptor) should reflect the reversible binding interaction profile. In Ca2+ channel research, three arylazide photo affinity probes are useful, namely ( - )- or (±)[3H]azidopine (1,4-dihydropyridines), [N-methyl-3H]LU49888 (a phenylalkylamine), and an azido derivative of [125I]ω-conotoxin GVIA (CgTx). The first two ligands are well characterized by reversible binding experiments and interact in a stereoselective manner and with high affinity with L-type Ca2+ channels [1-5]. The 125I-iodinated CgTx photoaffinity probe presumably incorporates into the N-type channel components, exclusively found in neuronal tissues [6]. L-type Ca2+ channels have distinct drug-receptor domains for different classes of drugs (e.g., the 1,4-dihydropyridines, phenylalkylamines, and benzothiazepines) linked to each other (and to high- and low-affinity divalent cation binding sites) by reciprocal allosteric coupling mechanisms [7]. Recently, the benzothiazinones [8] and diphenylbutylpiperidines [9, 10] have been suggested to act at yet another site.

Research of H. G. was supported by the Deutsche Forschungsgemeinschaft, Dr. Legerlotz Foundation, and Jubiläumsfonds der Nationalbank. H.G. and H.S. are funded by a Schwerpunktprogramm of the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Striessnig J, Knaus HG, Grabner M, Moosburger K, Seitz W, Lietz H, Glossmann H (1987) Photoaffinity labeling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett 212:247–253

    Article  PubMed  CAS  Google Scholar 

  2. Vaghy PL, Striessnig J, Miwa K, Knaus HG, Itagaki K, McKenna E, Glossmann H, Schwartz A (1987) Identification of a novel 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chern 262:14337–14342

    CAS  Google Scholar 

  3. Leung AT, Imagawa T, Campbell KP (1987) Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent calcium channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chern 262:7943–7946

    CAS  Google Scholar 

  4. Flockerzi V, Oeken HJ, Hofmann F (1986) Purification of a functional receptor for calcium channel blockers from rabbit skeletal muscle microsomes. Eur J Biochem 161:217–224

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi M, Seagar MJ, Jones JF, Reber BFX, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482

    Article  PubMed  CAS  Google Scholar 

  6. Abe T, Saisu H (1987) Identification of the receptor for omega-conotoxin in brain. J Biol Chern 262:9877–9882

    CAS  Google Scholar 

  7. Glossmann H, Ferry DR, Rombusch M (1984) Molecular pharmacology of the calcium channel: Evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4 dihydropyridine calcium channel label. [125IJiodipine. J Cardiovasc harmacol 6:608–621

    Article  CAS  Google Scholar 

  8. Striessnig J, Meusburger E, Grabner M, Knaus HG, Glossmann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct calcium antagonist receptor for the novel benzothiazinone compound HOE 166. Naunyn Schmiedeberg’s Arch Pharmacol 337 :331–340

    Article  CAS  Google Scholar 

  9. Galizzi JP, Fosset M, Romey G, Laduron P, Lazdunski M (1986 a) Neuroleptics ofthe diphenylbutylpiperidine series are potent calcium channel inhibitors. Proc Natl Acad Sci USA 83:7513–7517

    Article  PubMed  CAS  Google Scholar 

  10. King VF, Garcia ML, Kaczorowski GJ (1988) Interaction of fluspirilene with cardiac L-type calcium channels. Biophys J 53:557 a

    Google Scholar 

  11. Fosset M, Jaimovich E, Delpont E, Lazdunski M (1983) [3H]Nitrendipine receptors in skeletal muscle. J Biol Chern 258:6068–6092

    Google Scholar 

  12. Glossmann H, Ferry DR, Boschek CB (1983) Purification of the putative calcium channel from skeletal muscle with the aid of [3H]nimodipine binding. Nauny Schmiedeberg’s Arch Pharmacol 323:1–11

    Article  CAS  Google Scholar 

  13. Ferry DR, Rombusch M, Goll A, Glossmann H (1984) Photoaffinity labeling of Ca2+ channels with P[3H]azidopine. FEBS Lett 169:112–118

    Article  PubMed  CAS  Google Scholar 

  14. Ferry DR, Kümpf K, Goll A, Glossmann H (1985) Subunit composition of skeletal muscle transverse tubule calcium channel evaluated with the 1,4-dihydropyridine photoaffinity probe, P[3H]azidopine. EMBO J 4:1933–1940

    PubMed  CAS  Google Scholar 

  15. Sieber M, Nastainczyk W, Zubor V, Wernet W, Hofmann F (1987) The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur J Biochem 167:17–122

    Article  Google Scholar 

  16. Pauron D, Qar J, Barhanin J, Fournier D, Cuany A, Pralavorio M, Berge JB, Lazdunski M (1987) Identification and affinity labeling of very high affinity binding sites for the phenylalkylamine series of calcium channel blockers in the Drosophila nervous system. Biochemistry 26:6311–6315

    Article  PubMed  CAS  Google Scholar 

  17. Pastan I, Gottesmann M (1987) Multiple-drug resistance in human cancer. N Engl J Med 316:1388–1393

    Article  PubMed  CAS  Google Scholar 

  18. Striessnig J, Zernig G, Glossmann H (1985) Human red-blood-cell calcium antagonist binding sites. Eur J Biochem 150:67–77

    Article  PubMed  CAS  Google Scholar 

  19. Zernig G, Glossmann H (1988) A novel 1,4-dihydropyridine-binding site on mitochondrial membranes from guinea-pig heart, liver and kidney. Biochem J 252: in press

    Google Scholar 

  20. Dolle R, Nultsch W (1988) Specific binding of the calcium channel blocker [3H]verapamil to membrane fractions of Chlamydomonas reinhardtii. Arch Microbiol 149:451–458

    Article  CAS  Google Scholar 

  21. Dolle R, Nultsch W (1988) Characterization of d-[3H]cis-diltiazem binding to membrane fractions and specific binding of calcium channel blockers to isolated flagellar membrane of Chlamydomonas reinhardtü. Biologists in press

    Google Scholar 

  22. Dolle R (1988) Isolation of plasma membrane and binding of the calcium antagonist nimodipine in chlamydomonas reinhardtü. Physiologia Plant in press

    Google Scholar 

  23. Striessnig J, Moosburger K, Goll A, Ferry DR, Glossmann H (1986) Stereoselective photoaffinity labeling of the purified l,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur J Biochem 161:603–609

    Article  PubMed  CAS  Google Scholar 

  24. Glossmann H, Ferry DR, Striessnig J, Goll A, Moosburger K (1987) Resolving the structure of the calcium channel by photoaffinity labeling. Trends Pharmacol Sci 8:95–100

    Article  CAS  Google Scholar 

  25. Glossman H, Ferry DR, Lübbecke F, Mewes R, Hofmann F (1981) Calcium channels: direct identification with radioligand binding studies. Trends Pharmacol Sci 3:431–437

    Article  Google Scholar 

  26. Triggle DJ, Swamy VC (1983) Calcium antagonists. Circ Res 52:17–28

    CAS  Google Scholar 

  27. Janis RA, Silver PJ, Triggle DJ (1987) Drug action and cellular calcium regulation. Advances Drug Res 16:309–591

    CAS  Google Scholar 

  28. Reynolds D, Snowman AD, Snyder SH (1986) (-)- [3H]Desmethoxyverapamillabels multiple calcium channel modulator receptors in brain and skeletal muscle: Differentiation by temperature and dihydropyridines. J Pharmacol Exp Ther 237:731–738

    PubMed  CAS  Google Scholar 

  29. Glossmann H, Ferry DR, Goll A, Striessnig J, Zernig G (1985) Calcium channels: Basic properties as revealed by radioligand binding studies. J Cardiovasc Pharmacol 7:S20-S30

    Article  PubMed  CAS  Google Scholar 

  30. Cruz U, Olivera BM (1986) Calcium channel antagonist. J Biol Chern 261:6230–6233

    CAS  Google Scholar 

  31. McCleskey EW, Fox A, Feldman DH, Cruz U, Olivera BM, Tsien RW, Yoshikami D (1987) Omega-conotoxin: Direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci USA 84:4327–4331

    Article  PubMed  CAS  Google Scholar 

  32. Abe T, Koyano K, Saisu H, Nishiuchi Y, Sasakibara S (1986) Binding of omega-conotoxin to receptor sites associated with the voltage-sensitive calcium channel. Neurosci Lett 71:203–208

    Article  PubMed  CAS  Google Scholar 

  33. Knaus HG, Striessnig J, Koza A, Glossmann H (1987) Neurotoxic aminoglycoside antibiotics are potent inhibitors of P[125I]J-omega-conotoxin binding to guinea-pig cerebral cortex membranes. Naunyn Schmiedeberg’s Arch Pharmacol 336:583–586

    Article  CAS  Google Scholar 

  34. Wagner JA, Snowman AD, Snyder SH (1987) Aminoglycoside effects on voltage-sensitive calcium channels and neurotoxicity. N Engl J Med 317:1669

    PubMed  CAS  Google Scholar 

  35. Morton ME, Froehner SC (1987) Monoclonal antibody identifies a 200 kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chern 262:11904–11907

    CAS  Google Scholar 

  36. Leung AT, Imagawa T, Block B, Franzini-Armstrong C, Campbell KP (1988) Biochemical and ultrastructural characterization of the l,4-dihydropyridine receptor from rabbit skeletal muscle. J Biol Chern 263:994–1001

    CAS  Google Scholar 

  37. Takahashi M, Catterall WA (1987) Identification of an alpha-subunit of dihydropyridine-sensitive brain calcium channels. Science 236:88–91

    Article  PubMed  CAS  Google Scholar 

  38. Schmid A, Barhanin J, Coppola T, Borsotto M, Lazdunski M (1986) Immunochemical analysis of subunit structures of 1,4 dihydropyridine receptors associated with voltage-dependent calcium channels in skeletal, cardiac, and smooth muscles. Biochemistry 25:3492–3495

    Article  PubMed  CAS  Google Scholar 

  39. Vandaele S, Fosset M, Galizzi JP, Lazdunski M (1987) Monoclonal antibodies that coimmunoprecipitate the 1,4 dihydropyridine and phenylakylamine receptors and reveal the calcium channel structure. Biochemistry 26:5–9

    Article  PubMed  CAS  Google Scholar 

  40. Striessnig J, Knaus HG, GIossmann H (1988) Photoaffinity labeling of the calcium-channelassociated l,4-dihydropyridine and phenylakylamine receptor in guinea-pig hippocampus. Biochem J 252 in press

    Google Scholar 

  41. Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Article  PubMed  CAS  Google Scholar 

  42. Hofmann F, Nastainczyk W, Röhrkasten A, Schneider T, Sieber M (1987) Regulation of the L-type calcium channel. Trends Pharmacol Sci 8:393–398

    Article  CAS  Google Scholar 

  43. Curtis BM, Catterall WA (1985) Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 82:2528–2532

    Article  PubMed  CAS  Google Scholar 

  44. Glossmann H, Striessnig J, Hymel L, Schindler H (1987) Purified L-type calcium channels: only one single polypeptide (alpha1 subunit) carries the drug receptor domains and is regulated by protein kinases. Biomed Biochem Acta 46:S351–356

    CAS  Google Scholar 

  45. Nastainczyk W, R6hrkasten A, Sieber M, Rudolph C, Schächtele C, Marme D, Hofmann F (1987) Phosphorylation ofthe purified receptorfor calcium channel blockers by cAMP kinase and protein kinase C. Eur J Biochem 169:137–142

    Article  PubMed  CAS  Google Scholar 

  46. Curtis BM, Catterall WA (1983) Solubilization of the calcium antagonist receptor from rat brain. J Biol Chern 258:7280–7283

    CAS  Google Scholar 

  47. Flockerzi V, Oeken HJ, Hofmann F, Pelzer D, Cavalie A, Trautwein W (1986a) The purified dihydropyridine-binding site from skeletal muscle T-tubulus is a functional calcium channel. Nature (London) 323:66–68

    Article  CAS  Google Scholar 

  48. Smith JS, McKenna EJ, Ma J, Vilven J, Vaghy PL, Schwartz A, Coronado R (1987) Calcium channel activity in a purified dihydropyridine receptor preparation. Biochemistry 26:7182–7188

    Article  PubMed  CAS  Google Scholar 

  49. Talvenheimo JA, Worley III JF, Nelson MT (1987) Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. Biophys J 52:891–899

    Article  PubMed  CAS  Google Scholar 

  50. Hymel L, Striessnig J, Glossmann H, Schindler H (1988) Purified skeletal muscle 1,4 dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc Natl Acad Sci USA 85: in press

    Google Scholar 

  51. Schwartz LM, McCleskey EW, Almers W (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314:747–751

    Article  PubMed  CAS  Google Scholar 

  52. Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Article  PubMed  CAS  Google Scholar 

  53. Agnew WS (1987) Dual roles for DHP receptors in excitation-contraction coupling. Nature 328:297

    Article  PubMed  CAS  Google Scholar 

  54. Schindler H (1988) Planar lipid-protein membranes: Strategies for formation and of detecting dependencies of ion transport functions on membrane conditions. Methods Enzymol 171 in press

    Google Scholar 

  55. Coronado R, Latorre R (1983) Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J 43:231–236

    Article  PubMed  CAS  Google Scholar 

  56. Ehrlich BE, Schen CR, Garcia ML, Kaczorowski GJ (1986) Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers. Proc Natl Acad Sci USA 83:193–197

    Article  PubMed  CAS  Google Scholar 

  57. Imagawa T, Smith JS, Coronado R, Campbell KP (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the calcium-permeable pore of the calcium release channel. J Bioi Chern 262: 16636–16643

    CAS  Google Scholar 

  58. Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+ and Ca2+. J Gen Physiol 88:321–347

    Article  PubMed  CAS  Google Scholar 

  59. Bellemann P, Ferry D, Lübbecke F, Glossmann H (1981) [3H]Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Drug Res 31 (II): 2064–2067

    CAS  Google Scholar 

  60. Garcia MK, King VF, Siegl PKS, Reuben JP, Kaczorowski GJ (1986) Binding of Ca2+-entry blockers to cardiac sarcolemmal membrane vesicles. J Bioi Chern 261:8146–8157

    CAS  Google Scholar 

  61. Ferry DR, Goll A, Glossmann H (1987) Photo affinity labeling of the cardiac calcium channel. Biochem J 243:125–135

    Google Scholar 

  62. Zernig G, Moshammer T, Graziadei I, Glossmann H (1988) Regulation of the novel mitochondrial dihydropyridine binding site by nucleotides. Naunyn-Schmiederberg’s Arch Pharmacol (abstr): in press

    Google Scholar 

  63. Glossmann H, Striessnig J (1988) Calcium channels. Vitam Horm in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glossmann, H., Striessnig, J., Hymel, L., Zernig, G., Knaus, H.G., Schindler, H. (1988). The Structure of the Ca2+ Channel: Photoaffinity Labeling and Tissue Distribution. In: Morad, M., Nayler, W.G., Kazda, S., Schramm, M. (eds) The Calcium Channel: Structure, Function and Implications. Bayer AG Centenary Symposium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73914-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73914-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50061-2

  • Online ISBN: 978-3-642-73914-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics