Skip to main content

Luminescent Bacteria: Symbionts of Nematodes Am) Pathogens of Insects

  • Conference paper
Cell to Cell Signals in Plant, Animal and Microbial Symbiosis

Part of the book series: NATO ASI Series ((ASIH,volume 17))

Abstract

Luminous bacteria are a well-known group of (primarily marine) bacteria that are ecologically quite diverse (Nealson and Hastings, 1979). They participate in a wide variety of symbioses, including loose associations as gut symbionts, species-specific associations as extracellular symbionts of light organs of marine fishes and squids, and intracellular associations as symbionts of luminous tunicates (Nealson et al., 1981). Some examples of these associations are shown in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhab dus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303–309.

    Google Scholar 

  • Akhurst, R.J. 1982. Antibiotic activity of Xenorhabdus spp., bacteria sym biotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128: 3061–3065.

    PubMed  CAS  Google Scholar 

  • Bassot, J.M. 1975. Les organes lumineux a bacteries symbiotiques de quelques teleosteens Leiognathides. Arch. Zool. Exp. Gen. 116: 359–373.

    Google Scholar 

  • Bird, A.F., Akhurst, R.J. 1983. The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int. J. Parasit. 13: 599–606.

    Article  Google Scholar 

  • Bleakly, B., Nealson, K.H. 1987. Characterization of primary and secondary forms of Xenorhabdus luminescens: Growth, luminescence, and secondary metabolite production in defined media. J. Bacteriol. (in press).

    Google Scholar 

  • Boemare, N., Louis, C., Kuhl, G. 1982. Etude ultrastructurale des cristaux chez Xenorhabdus spp., bacteries infeodees aux nematodes entomophages Steinernematidae et Heterorhabditidae. C.R. Soc. Biol. 177: 107–115.

    Google Scholar 

  • Bowen, D., Ensign, J.C. 1987. Intracellular protein crystal of the insect pathogen Xenorhabdus luminescens. Proc. Amer. Soc. Microbiol. p. 183 (abstract).

    Google Scholar 

  • Couche, G.A., Gregson, R.P. 1986. Metabolites produced during in vitro growth of Xenorhabdus sp. Proc. Int. Conf. Insect. Parasitol. Netherlands (abstract).

    Google Scholar 

  • Couche, G.A., Gregson, R.P. 1987. Protein inclusions produced by the ento-mopathogenic bacterium, Xenorhabdus nematophilus subsp. nematophilus. J. Bacteriol. (in press).

    Google Scholar 

  • Dunlap, P.V. 1984. The ecology and physiology of the light organ symbiosis between Photobacterium leiognathi and ponyfishes. PhD Thesis, Univ. Cal. Los Angeles, CA.

    Google Scholar 

  • Dunlap, P.V. 1985. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch. Microbiol. 141: 44–50.

    CAS  Google Scholar 

  • Dunphy, G.B., Rutherford, T.A., Webster, J.M. 1985. Growth and virulence of Steinernema glaseri influenced by different subspecies of Xenorhabdus nematophilus. J. Nematol. 17: 476–482.

    PubMed  CAS  Google Scholar 

  • Gaugier, R. 1981. Biological control potential of neoaplectanid nematodes. J. Nematol. 13: 241–249.

    Google Scholar 

  • Grimont, P.A., Steigerwalt, A.G., Boemare, N., Hickman-Brenner, F.W., Deval, C., Grimont, F., Brenner, D.J. 1984. Deoxyribonucleic acid relatedness and phenotypic study of the genus Xenorhabdus. Int. J. Syst. Bacteriol. 34: 378–388.

    Article  CAS  Google Scholar 

  • Haygood, M.G., Nealson, K.H. 1985. Mechanisms of iron regulation of luminescence in Vibrio fischeri. J. Bacteriol. 162: 209–216.

    PubMed  CAS  Google Scholar 

  • Haygood, M.G., Nealson, K.H. 1985. The effect of iron of the growth and luminescence of the symbiotic bacterium Vibrio fischeri. Symbiosis 1: 39–51.

    CAS  Google Scholar 

  • Haygood, M.G., Tebo, B., Nealson, K.H. 1984. Luminous bacteria of a monocen trid fish (Monocentris japonicus) and two anomalopid fishes (Photoblepha-ron palpebratus and Kryptophanaron alfredi): Population sizes and growth within the light organs, and rates of release into the seawater. Mar. Biol. 75: 249–254.

    Article  Google Scholar 

  • Kessel, M. 1978. The ultrastructure of the relationship between the luminous organ of the teleost fish Photoblepharon palpebratus and its symbiotic bacteria. Cytobiologie Z. Exp. Zeilforsch. 15: 145–158.

    Google Scholar 

  • Kopecky, Nealson, K.H. 1984. Cross reaction of luciferase subunits from different species of bacteria. Proc. Amer. Soc. Microbiol. (abstract).

    Google Scholar 

  • Makemson, J., Hastings, J.W. 1982. Iron represses bioluminescence and affects catabolite repression of luminescence in Vibrio harveyi. Curr. Microbiol. 7: 181–186.

    Article  CAS  Google Scholar 

  • McFall-Ngai, M.J. 1983. Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae) J. Expt. Zool. 227: 23–33.

    Article  CAS  Google Scholar 

  • McFall-Ngai, M.J., Dunlap, P. 1963. Three new modes of luminescence in the leiognathid fish Gazza minuta: Discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73: 227–237.

    Article  Google Scholar 

  • Meighen, E., Bartlet, I. 1980. Complementation of subunits from different bacterial luciferases. J. Biol. Chem. 255: 1181–1187.

    Google Scholar 

  • Morris, O.N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomagenous nematodes Steinernema feltiae and Heterorhabditis bac-teriophora. Can. Ent. 117: 401–407.

    Article  Google Scholar 

  • Nealson, K.H. 1977. Autoinduction of bacterial luciferase: Occurrence, mechanism and significance. Arch. Microbiol. 112: 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Nealson, K.H. 1979. Alternative strategies of symbiosis of marine luminous fishes harboring light emitting bacteria. Trends Biochem. Sci. 4: 105–110.

    Article  CAS  Google Scholar 

  • Nealson, K.H., Hastings, J.W. 1977. Low oxygen is optimal for luciferase synthesis in some bacteria: Ecological implications. Arch. Microbiol. 112: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Nealson, K.H., Hastings, J.W. 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 43: 496–518.

    PubMed  CAS  Google Scholar 

  • Nealson, K.H., Eberhard, A., Hastings, J.W. 1972. Catabolite repression of bacterial bioluminescence: Functional implications. Proc. Nat. Acad. Sci. (USA) 59: 1073–1076.

    Article  Google Scholar 

  • Nealson, K.H., Cohn, D., Leisman, G., Tebo, B. 1981. Coevolution of luminous bacteria and their eukaryotic hosts. N.Y. Acad. Sci. 361: 76–91.

    Article  CAS  Google Scholar 

  • Paul, V.J., Frautschy, S., Fenical, W., Nealson, K.H. 1981. Antibiotics in microbial ecology: Isolation and structure assignment of several new antibacterial compounds for the insect-symbiotic bacteria Xenorhabdus spp. J. Chem. Ecol. 7: 589–597.

    Article  CAS  Google Scholar 

  • Poinar, G.O. 1966. The presence of Achromobacter nematophilus in the infective stage of a Neoplectana sp. (Steinernematidae: Nematoda). Nemagolo-gica 12: 105–108.

    Google Scholar 

  • Poinar, G.O., Thomas, G.M. 1966. Significance of Achromobacter nematophilus Poinar & Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode, DD136 (Neoplectana sp. Steinernematidae). Parasitol. 56: 385–390.

    Article  Google Scholar 

  • Poinar, G.O., Thomas, G.M. 1967. The nature of Achromobacter nematophilus as an insect pathogen. J. Invert. Pathol. 9: 510–514.

    Article  Google Scholar 

  • Poinar, G.O. Jr., Thomas, G., Haygood, M., Nealson, K.H. 1980. Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode, Heterorhabditis bacteriophora. Soil Biol. Biochem. 12: 5–10.

    Article  Google Scholar 

  • Richardson, W.H., Schmidt, T.M., Nealson, K.H. 1987. Secondary metabolite production by Xenorhabdus luminescens. J. Bacteriol. (in press).

    Google Scholar 

  • Ruby, E.G., Hastings, J.W. 1980. Formation of hybrid luciferases from subu-nits of different species of Photobacterium. Biochem. 19: 4989–4993.

    Article  CAS  Google Scholar 

  • Schmidt, T.M., Nealson, K.H. 1987. Regulation of bioluminescence and proper ties of luciferase from Xenorhabdus luminescens. J. Bacteriol. (in press).

    Google Scholar 

  • Schmidt, T.M., Bleakley, B., Nealson, K.H. 1987. Purification and characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens. J. Gen. Microbiol. (in press).

    Google Scholar 

  • Silverman, M., Simon, M. 1983. Phase Variation and Related Systems (J.A. Shapiro, Ed.) Academic Press, N.Y.

    Google Scholar 

  • Tebo, B.M., Linthicum, D.S., Nealson, K.H. 1979. Luminous bacteria and light emitting fish: Ultrastructure of the symbiosis. BioSystems 11: 169–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nealson, K., Schmidt, T.M., Bleakley, B. (1988). Luminescent Bacteria: Symbionts of Nematodes Am) Pathogens of Insects. In: Scannerini, S., Smith, D., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (eds) Cell to Cell Signals in Plant, Animal and Microbial Symbiosis. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73154-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73154-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73156-3

  • Online ISBN: 978-3-642-73154-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics