Skip to main content

Immunotoxins for Brain Tumor Therapy

  • Chapter
Clinical Applications of Immunotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 234))

Abstract

Cancer cells can be specifically killed by a class of therapeutic molecules called immunotoxins that combine the potent toxicity of natural plant and bacterial proteins with the tumor-specific binding capacity of monoclonal antibodies. Toxins such as ricin and diphtheria toxin have been linked to new cell surface binding moieties in order to target tumor cells for destruction. To the extent that tumor cells have cell surface receptors that distinguish them from normal and essential cells, immunotoxins can be considered as potential reagents for cancer therapy. Tumor cell specific ligands, such as growth factors or monoclonal antibodies, can be linked to protein toxins by random chemical modification of lysine or sulfhydral residues (Vitetta et al. 1987) or by fusion of the new protein domains at the COOH- or NH2-terminal of the protein by molecular biology techniques (Pastan et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bergstrom M, Collins P, Ehrin E (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [1 C]glucose, and [1’C]methionine. J Comput Assist Tomogr 7: 1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91: 2076–2080

    Article  PubMed  CAS  Google Scholar 

  • Book A, Wiley R, Schweitzer J (1995) 192 IgG-saporin. Acta Neuropathol (Berl) 89: 519–526

    Article  CAS  Google Scholar 

  • Boucher Y, Baxter L, Jain R (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50: 4478–4484

    PubMed  CAS  Google Scholar 

  • Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G, Muller P, Morawetz R, Schold SC (1995) OPlacebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345: 1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Earnest F, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166: 823–827

    PubMed  Google Scholar 

  • Fenstermacher J, Kaye T (1988) Drug “diffusion” within the brain. Ann NY Acad Sci 531: 29–39

    Article  PubMed  CAS  Google Scholar 

  • Fishman RA, Chan PH (1990) Liposome entrapment of drugs and enzymes to enable passage across the blood-brain barrier. Pathophysiology of the blood-brain barrier. Elsevier Science, Amsterdam

    Google Scholar 

  • Gatter K, Brown G, Trowbridge I, Woolston R-E, Mason D (1983) Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 36: 539–545

    Article  PubMed  CAS  Google Scholar 

  • Greenfield L, Johnson VG, Youle RJ (1987) Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 238: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Jeffries WA, Brandon MR, Hunt SV (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312: 162–163

    Article  Google Scholar 

  • Johnson VG, Wilson D, Greenfield L, Youle RJ (1988) The role of the diphtheria toxin receptor in cytosol translocation. J Biol Chem 263: 1295–1300

    PubMed  CAS  Google Scholar 

  • Johnson VG, Wrobel C, Wilson D, Zovickian J, Greenfield L, Oldfield EH, Youle RJ (1989) Improved tumor-specific immunotoxins in the treatment of CNS and leptomeningeal neoplasia. J Neurosurg 70: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Kalaria R, Sromek S, Grahovac I, Harik S (1992) Transferrin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer’s disease. Brain Res 585: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Laird W, Groman N (1976) Isolation and characterization of tox mutants of corynebacteriophage beta. J Virol 19: 220–227

    PubMed  CAS  Google Scholar 

  • Laske DW, Ilercil O, Akbasak A, Youle RJ, Oldfield EH (1994) Efficacy of direct intratumoral therapy with targeted protein toxins for solid human gliomas in nude mice. J Neurosurg 80: 520–526

    Article  PubMed  CAS  Google Scholar 

  • Laske D, Muraszko K, Oldfield E, DeVroom H, Sung C, Dedrick R, Simon T, Colendrea J, Copeland C, Katz D, Groves E, Greenfield L, Houston L, Youle R (1997a) Intrathecal immunotoxin therapy for leptomeningeal neoplasia. Neurosurgery (in press)

    Google Scholar 

  • Laske D, Youle R, Oldfield E (1997b) Tumor regression with regional distribution of the targeted toxin Tf-CRM107 in patients with malignant brain tumors (in press)

    Google Scholar 

  • Laske DW, Morrison PF, Lieberman D, Corthesy M, Reynolds J, Stewart-Henney P, Koong S, Cummins A, Paik C, Oldfield EH (1997e) Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with SPECT imaging. J Neurosurg (in press)

    Google Scholar 

  • Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82: 1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Marmarou A, Nakamura T, Tanaka K (1984) The kinetics of fluid movement through brain tiss. Semin Neurol 4: 439–444

    Article  Google Scholar 

  • Martell L, Agrawal A, Ross D, Muraszko K (1993) Efficacy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors. Cancer Res 53: 1348–1353

    PubMed  CAS  Google Scholar 

  • Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL (1994) High-flow microinfusion: tissue penetration and pharmakodynamics. Am J Physiol 266 (1,2): R292–305

    PubMed  CAS  Google Scholar 

  • Muraszko K, Sung C, Walbridge S, Greenfield L, Dedrick R, Oldfield E, Youle R (1993) Pharmacokinetics and toxicology of immunotoxins administered into the subarachnoid space in nonhuman primates and rodents. Cancer Res 53: 3752–3757

    PubMed  CAS  Google Scholar 

  • Nicholls PJ, Johnson VG, Andrew SM, Hoogenboom HR, Raus JC, Youle RJ (1993) Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate. J Biol Chem 268: 5302–5308

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1990) Chimeric peptides as a vehicle for neuropharmaceutical delivery through the blood-brain barrier. Pathophysiology of the blood-brain barrier. Elsevier Science, Amsterdam

    Google Scholar 

  • Pastan I, Willingham M, FitzGerald D (1986) Immunotoxins. Cell 47: 641–644

    Article  CAS  Google Scholar 

  • Rapoport SI, Hori M, Klatzo I (1972) Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223: 223–231

    Google Scholar 

  • Recht L, Torres CO, Smith TW, Raso V, Griffin TW (1990) Transferrin receptor in normal and neoplastic brain tissue implications for brain tumor immunotherapy. J Neurosurg 72: 941–945

    Article  PubMed  CAS  Google Scholar 

  • Riedel CJ, Muraszko KM, Youle RJ (1990) Diphtheria toxin mutant selectively kills cerebellar Purkinje neurons. Proc Natl Acad Sci USA 87: 5051–5055

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg FJ, Romano JJ, Shaw DD (1980) Metrizamide, iothalamate, and metrizoate: effects of internal carotid arterial injections on the blood-brain barrier of the rabbit. Invest Radiol 15 [6 Suppl]: S275–279

    Article  PubMed  CAS  Google Scholar 

  • Sevick E, Jain R (1989) Viscous resistance to blood flow in solid tumors: effect of hematocrit on intra-tumor blood viscosity. Cancer Res 49: 3513–3519

    PubMed  CAS  Google Scholar 

  • Shin S-U, Friden P, Moran M et al. (1995) Transferrin-antibody fusion proteins are effective in brain targeting. PNAS 92: 2820–2824

    Article  PubMed  CAS  Google Scholar 

  • Sung C, Wilson D, Youle R (1991) Comparison of protein synthesis inhibition kinetics and cell killing induced by immunotoxins. J Biol Chem 266: 14159–14162

    PubMed  CAS  Google Scholar 

  • Sung C, Dedrick R, Hall W, Johnson P, Youle R (1993) The spatial distribution of immunotoxins in solid tumors: assessment by quantitative autoradiography. Cancer Res 53: 2092–2099

    PubMed  CAS  Google Scholar 

  • Trowbridge I, Lesley J, Schulte R (1982) Murine cell surface transferrin receptor: studies with an anti-receptor monoclonal antibody. J Cell Physiol 112: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Vitetta E, Fulton R, May R, Uhr J (1987) Redesigning naturé s poisons to create anti-tumor reagents. Science 238: 1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Waite JJ, Chen AD, Wardlow ML, Wiley RG, Lappi DA, Thal LJ (1995) 192 immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells. Neuroscience 65: 463–476

    Article  PubMed  CAS  Google Scholar 

  • Youle R (1991) Mutations in diphtheria toxin to improve immunotoxin selectivity and understand toxin entry into cells. Semin Cell Biol 2: 39–45

    PubMed  CAS  Google Scholar 

  • Zovickian J, Youle RJ (1988) Intrathecal immunotoxin therapy in an animal model of leptomeningeal neoplasia. J Neurosurg 68: 767–774

    Article  PubMed  CAS  Google Scholar 

  • Zovickian J, Johnson VG, Youle RJ (1987) Potent and specific killing of human malignant brain tumor cells by an anti-transferrin receptor antibody-ricin immunotoxin. J Neurosurg 66: 850–861

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oldfield, E.H., Youle, R.J. (1998). Immunotoxins for Brain Tumor Therapy. In: Frankel, A.E. (eds) Clinical Applications of Immunotoxins. Current Topics in Microbiology and Immunology, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72153-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72153-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72155-7

  • Online ISBN: 978-3-642-72153-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics