Skip to main content

Targeted Cancer Therapy: History and Development of Immunotoxins

  • Chapter
  • First Online:
Resistance to Immunotoxins in Cancer Therapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 6))

Abstract

Though a number of new drugs have been and are being formulated to treat cancer, newer therapeutic approaches are needed due to increased instances of drug resistance and toxic side effects. One relatively new approach for treatment is immunotherapy, using antibodies or ligands to cell surface molecules as vehicles to deliver toxins to specific cells, thus increasing the efficacy of the treatment by several folds. Such conjugates, of antibodies and toxins termed ‘immunotoxins’ are generated either as chemical conjugates using hetero-bifunctional cross-linkers that link the antibody to the toxin, or as ‘fusion proteins’, wherein, the gene for the antibody and the gene for the toxin are cloned together as one construct into bacterial expression systems and expressed as recombinant proteins. Several toxins, mainly the inhibitors of translation, are being explored for preparing immunotoxins. This chapter provides an overview of the treatment modalities adopted to date for the cancer management and introduces the field of immunotherapy. The chapter also focuses on the different toxins used in generating immunotoxins and on those that have made it to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-fluorouracil

ADCC:

Antibody-dependent cellular cytotoxicity

bsAb:

Bispecific antibody

BiTE:

Bispecific T cell engager

CT:

Cancer-testis

CEA:

Carcinoembryonic antigen

CLL:

Chronic lymphocytic leukemia

CD:

Cluster of differentiation

CDC:

Complement dependent cytotoxicity

CDR:

Complementarity determining region

CTCL:

Cutaneous T-cell lymphoma

CTL:

Cytotoxic T lymphocyte

CTLA4:

Cytotoxic T lymphocyte-associated antigen 4

DC:

Dendritic cells

DMSO:

Dimethyl sulfoxide

DT:

Diphtheria toxin

ER:

Endoplasmic reticulum

EPHA3:

Ephrin receptor A3

EGF:

Epidermal growth factor

EpCAM:

Epithelial cell adhesion molecule

ERAD:

ER-associated degradation

eEF2:

Eukaryotic elongation factor 2

FATE-1:

Fetal and adult testis-expressed transcript 1

FAP:

Fibroblast activation protein

GBM:

Glioblastomamultiformes

GM-CSF:

Granulocyte-macrophage colony stimulating factor receptor

HCL:

Hairy cell leukemia

HGFR:

Hepatocyte growth factor receptor

HER2:

Human epidermal growth factor receptor 2

Ig:

Immunoglobulin

IT:

Immunotoxin

ITAM:

Immunotyrosine-activating motif

IGF1R:

Insulin-like growth factor 1 receptor

IL-10:

Interleukin 10

IL-2R:

Interleukin-2 receptor

MHC:

Major histocompatibility complex

MART-1:

Melanocyte antigen recognized by T-cells 1

MAC:

Membrane-attack complex

MMP:

Mitochondrial membrane potential

mAb:

Monoclonal antibody

NK:

Natural killer

NHS:

N-hydroxysuccinimide

SPDP:

N-succinimidyl 3-(2-pyridyldithio) propionate

SMPT:

Succinimidyloxycarbonyl-C-methyl-C-(2-pyridyldithio) toluene

PARP:

Poly-ADP ribose polymerase

PE:

Pseudomonas exotoxin

ROS:

Reactive oxygen species

RANKL:

Receptor activator of nuclear factor-xB ligand

RNA:

Ribonucleic acid

rRNA:

ribosomal RNA

RIP:

Ribosome inactivating protein

SAGE-1:

Sarcoma antigen 1

ST:

Shiga toxin

scFv:

Single chain Fv

SAPK:

Stress Activated Protein Kinase

(scFv)2 :

Tandem scFv

TRAIL1:

TNF-related apoptosis inducing ligand 1

TGF:

Transforming growth factor

TEM:

Triethylenemaleamine

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

VAMP:

Vincristine, Amethopterin, 6-mercaptopurine, Prednisone.

References

  1. Papac RJ. Origins of cancer therapy. Yale J Biol Med. 2001;74(6):391–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wright JC. Cancer chemotherapy: past, present, and future–part I. J Natl Med Assoc. 1984;76(8):773–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. DeVita JVT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53.

    Article  CAS  PubMed  Google Scholar 

  4. Wright JC. Clinical cancer chemotherapy. N Y State J Med. 1961;61:249–80.

    CAS  PubMed  Google Scholar 

  5. Wright JC. Cancer chemotherapy: past, present, and future–part II. J Natl Med Assoc. 1984;76(9):865–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787–93.

    Article  CAS  PubMed  Google Scholar 

  7. Elion GB, Singer S, Hitchings GH. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954;208(2):477–88.

    CAS  PubMed  Google Scholar 

  8. Hitchings GH, Elion GB. The chemistry and biochemistry of purine analogs. Ann N Y Acad Sci. 1954;60(2):195–99.

    Article  CAS  PubMed  Google Scholar 

  9. Burchenal JH, Murphy ML, Ellison RR, Sykes MP, Tan TC, Leone LA, Karnovsky DA, Craver LF, Dargeon HW, Rhoads CP. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood. 1953;8(11):965–99.

    CAS  PubMed  Google Scholar 

  10. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Greisbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J. Fluorinated pyrimidines, new class of tumour-inhibitory compounds. Nature. 1957;179(4561):663–66.

    Article  CAS  PubMed  Google Scholar 

  11. Heidelberger C, Ansfield FJ. Experimental and clinical use of fluorinated pyrimidines in cancer chemotherapy. Cancer Res. 1963;23:1226–43.

    CAS  PubMed  Google Scholar 

  12. Wright JC, Medrek TJ, Walker DG, Lyons MM. The current status of chemotherapy and hormone therapy for cancer. Prog Clin Cancer. 1965;10:264–307.

    CAS  PubMed  Google Scholar 

  13. Bonadonna G, Monfardini S, De Lena M, Fossati-Bellani F. Clinical evaluation of adriamycin, a new antitumour antibiotic. Br Med J. 1969;3(5669):503–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dyke RW, Nelson RL. Phase I anti-cancer agents: vindesine (desacetyl vinblastine amide sulfate). Cancer Treat Rev. 1977;4(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–99.

    Article  CAS  PubMed  Google Scholar 

  16. Fischinger PJ, DeVita JVT. Governance of science at the National Cancer Institute: perceptions and opportunities in oncogene research. Cancer Res. 1984;44(10):4693–6.

    CAS  PubMed  Google Scholar 

  17. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.

    Article  CAS  PubMed  Google Scholar 

  18. Sparreboom A, Verweij J. Advances in cancer therapeutics. Clin Pharmacol Ther. 2009;85(2):113–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Davis ID. An overview of cancer immunotherapy. Immunol Cell Biol. 2000;78(3):179–95.

    Article  CAS  PubMed  Google Scholar 

  20. Llewelyn MB, Hawkins RE, Russell SJ. Discovery of antibodies. BMJ. 1992;305(6864):1269–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  22. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10(5):301–16.

    Article  CAS  PubMed  Google Scholar 

  23. Schliemann C, Neri D. Antibody-based vascular tumor targeting. Recent Results Cancer Res. 2010;180:201–16.

    CAS  PubMed  Google Scholar 

  24. Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol. 2008;26(11):1774–7.

    Article  PubMed  Google Scholar 

  25. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  26. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Eccles SA. Monoclonal antibodies targeting cancer: ‘magic bullets’ or just the trigger? Breast Cancer Res. 2001;3(2):86–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  CAS  PubMed  Google Scholar 

  29. Hudis CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  30. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.

    Article  CAS  PubMed  Google Scholar 

  31. Mackey J, Gelmon K, Martin M, McCarthy N, Pinter T, Rupin M, Youssoufian H. TRIO-012: a multicenter, multinational, randomized, double-blind phase III study of IMC-1121B plus docetaxel versus placebo plus docetaxel in previously untreated patients with HER2-negative, unresectable, locally recurrent or metastatic breast cancer. Clin Breast Cancer. 2009;9(4):258–61.

    Article  CAS  PubMed  Google Scholar 

  32. Weiner LM, Adams GP. New approaches to antibody therapy. Oncogene. 2000;19(53):6144–51.

    Article  CAS  PubMed  Google Scholar 

  33. Order SE, Sleeper AM, Stillwagon GB, Klein JL, Leichner PK. Radiolabeled antibodies: results and potential in cancer therapy. Cancer Res. 1990;50(3 Suppl):1011s–3s.

    CAS  PubMed  Google Scholar 

  34. Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer. Cell. 2012;148(6):1081–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pirker R. Immunotoxins against solid tumors. J Cancer Res Clin Oncol. 1988;114(4):385–93.

    Article  CAS  PubMed  Google Scholar 

  36. Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993;1154(3–4):237–82.

    Article  CAS  PubMed  Google Scholar 

  37. Hertler AA, Frankel AE. Immunotoxins: a clinical review of their use in the treatment of malignancies. J Clin Oncol. 1989;7(12):1932–42.

    CAS  PubMed  Google Scholar 

  38. Thrush GR, Lark LR, Clinchy BC, Vitetta ES. Immunotoxins: an update. Annu Rev Immunol. 1996;14:49–71.

    Article  CAS  PubMed  Google Scholar 

  39. Baselga J, Mendelsohn J. Receptor blockade with monoclonal antibodies as anti-cancer therapy. Pharmacol Ther. 1994;64(1):127–54.

    Article  CAS  PubMed  Google Scholar 

  40. Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5(2):147–59.

    Article  CAS  PubMed  Google Scholar 

  41. Ragupathi G. Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol Immunother. 1996;43(3):152–57.

    Article  CAS  PubMed  Google Scholar 

  42. Brinkmann U, Pastan I. Immunotoxins against cancer. Biochim Biophys Acta. 1994;1198(1):27–45.

    CAS  PubMed  Google Scholar 

  43. Gadina M, Newton DL, Rybak SM, Wu YN, Youle RJ. Humanized immunotoxins. Ther Immunol. 1994;1(1):59–64.

    CAS  PubMed  Google Scholar 

  44. Wen ZL, Tao X, Lakkis F, Kiyokawa T, Murphy JR. Diphtheria toxin-related alpha-melanocyte-stimulating hormone fusion toxin. Internal in-frame deletion from Thr387 to His485 results in the formation of a highly potent fusion toxin which is resistant to proteolytic degradation. J Biol Chem. 1991;266(19):12289–93.

    CAS  PubMed  Google Scholar 

  45. Walz G, Zanker B, Brand K, Waters C, Genbauffe F, Zeldis JB, Murphy JR, Strom TB. Sequential effects of interleukin 2-diphtheria toxin fusion protein on T-cell activation. Proc Natl Acad Sci U S A. 1989;86(23):9485–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lin JY, Tserng KY, Chen CC, Lin LT, Tung TC. Abrin and ricin: new anti-tumour substances. Nature. 1970;227(5255):292–3.

    Article  CAS  PubMed  Google Scholar 

  47. Peumans WJ, Hao Q, Van Damme EJ. Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J. 2001;15(9):1493–1506.

    Article  CAS  PubMed  Google Scholar 

  48. Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B. JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci U S A. 1994;91(15):7012–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kozlov IV, Sudarkina OI, Kurmanova AG. Ribosome-inactivating lectins from plants. Mol Biol (Mosk). 2006;40(4):711–23.

    Article  Google Scholar 

  50. Stirpe F, Battelli MG. Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci. 2006;63(16):1850–66.

    Article  CAS  PubMed  Google Scholar 

  51. Kreitman RJ. Immunotoxins for targeted cancer therapy. AAPS J. 2006;8(3):E532–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lord JM, Roberts LM. Toxin entry: retrograde transport through the secretory pathway. J Cell Biol. 1998;140(4):733–6.

    Article  CAS  PubMed  Google Scholar 

  53. Day PJ, Owens SR, Wesche J, Olsnes S, Roberts LM, Lord JM. An interaction between ricin and calreticulin that may have implications for toxin trafficking. J Biol Chem. 2001;276(10):7202–8.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Zhu X, Torelli AT, Lee M, Dzikovski B, Koralewski RM, Wang E, Freed J, Krebs C, Ealick SE, Lin H. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme. Nature. 2010;465(7300):891–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Endo Y, Tsurugi K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem. 1988;263(18):8735–9.

    CAS  PubMed  Google Scholar 

  56. Endo Y, Mitsui K, Motizuki M, Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987;262(12):5908–12.

    CAS  PubMed  Google Scholar 

  57. Endo Y, Wool IG. The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem. 1982;257(15):9054–60.

    CAS  PubMed  Google Scholar 

  58. Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44(4):371–83.

    Article  CAS  PubMed  Google Scholar 

  59. Griffiths GD, Leek MD, Gee DJ. The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J Pathol. 1987;151(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  60. Vervecken W, Kleff S, Pfuller U, Bussing A. Induction of apoptosis by mistletoe lectin I and its subunits. No evidence for cytotoxic effects caused by isolated A- and B-chains. Int J Biochem Cell Biol. 2000;32(3):317–26.

    Article  CAS  PubMed  Google Scholar 

  61. Kojio S, Zhang H, Ohmura M, Gondaira F, Kobayashi N, Yamamoto T. Caspase-3 activation and apoptosis induction coupled with the retrograde transport of Shiga toxin: inhibition by brefeldin A. FEMS Immunol Med Microbiol. 2000;29(4):275–81.

    Article  CAS  PubMed  Google Scholar 

  62. Narayanan S, Surendranath K, Bora N, Surolia A, Karande AA. Ribosome inactivating proteins and apoptosis. FEBS Lett. 2005;579(6):1324–31.

    Article  CAS  PubMed  Google Scholar 

  63. Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SL, Magun BE. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol. 1997;17(6):3373–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect Immun. 2003;71(3):1497–1504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Narayanan S, Surolia A, Karande AA. Ribosome-inactivating protein and apoptosis: abrin causes cell death via mitochondrial pathway in Jurkat cells. Biochem J. 2004;377(Pt 1):233–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Fujii J, Matsui T, Heatherly DP, Schlegel KH, Lobo PI, Yutsudo T, Ciraolo GM, Morris RE, Obrig T. Rapid apoptosis induced by Shiga toxin in HeLa cells. Infect Immun. 2003;71(5):2724–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Erwert RD, Eiting KT, Tupper JC, Winn RK, Harlan JM, Bannerman DD. Shiga toxin induces decreased expression of the anti-apoptotic protein Mcl-1 concomitant with the onset of endothelial apoptosis. Microb Pathog. 2003;35(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  68. Jones NL, Islur A, Haq R, Mascarenhas M, Karmali MA, Perdue MH, Zanke BW, Sherman PM. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol. 2000;278(5):G811–9.

    CAS  PubMed  Google Scholar 

  69. Komatsu N, Nakagawa M, Oda T, Muramatsu T. Depletion of intracellular NAD(+) and ATP levels during ricin-induced apoptosis through the specific ribosomal inactivation results in the cytolysis of U937 cells. J Biochem. 2000;128(3):463–70.

    Article  CAS  PubMed  Google Scholar 

  70. Mishra R, Karande AA. Endoplasmic reticulum stress-mediated activation of p38 MAPK, Caspase-2 and Caspase-8 leads to abrin-induced apoptosis. PLoS ONE. 2014;9(3):e92586. doi:10.1371/journal.pone.0092586.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Li XP, Baricevic M, Saidasan H, Tumer NE. Ribosome depurination is not sufficient for ricin-mediated cell death in Saccharomyces cerevisiae. Infect Immun. 2007;75(1):417–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Moolten FL, Cooperband SR. Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science. 1970;169(3940):68–70.

    Article  CAS  PubMed  Google Scholar 

  73. FitzGerald DJ, Kreitman R, Wilson W, Squires D, Pastan I. Recombinant immunotoxins for treating cancer. Int J Med Microbiol. 2004;293(7–8):577–82.

    Article  CAS  PubMed  Google Scholar 

  74. Olsnes S, Sandvig K, Madshus IH, Sundan A. Entry mechanisms of protein toxins and picornaviruses. Biochem Soc Symp. 1985;50:171–91.

    CAS  PubMed  Google Scholar 

  75. Pastan I, Willingham MC, FitzGerald DJ. Immunotoxins. Cell. 1986;47(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  76. Gadadhar S, Karande AA. Abrin immunotoxin: targeted cytotoxicity and intracellular trafficking pathway. PLoS ONE. 2013;8(3):e58304. doi:10.1371/journal.pone.0058304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Bellisola G, Fracasso G, Ippoliti R, Menestrina G, Rosén A, Soldà S, Udali S, Tomazzolli R, Tridente G, Colombatti M. Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol. 2004;67(9):1721–31.

    Article  CAS  PubMed  Google Scholar 

  78. Choudhary S, Mathew M, Verma RS. Therapeutic potential of anticancer immunotoxins. Drug Discov Today. 2011;16(11–12):495–503.

    Article  CAS  PubMed  Google Scholar 

  79. Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, Waldmann TA, Pastan I. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000;18(8):1622–36

    CAS  PubMed  Google Scholar 

  80. Alderson RF, Kreitman RJ, Chen T, Yeung P, Herbst R, Fox JA, Pastan I. CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res. 2009;15(3):832–9. doi:10.1158/1078-0432.CCR-08-1456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res. 2002;8(4):995–1002.

    CAS  PubMed  Google Scholar 

  82. Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30(15):1822–28. doi:10.1200/JCO.2011.38.1756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Dosio F, Stella B, Cerioni S, Gastaldi D, Arpicco S. Advances in anticancer antibody-drug conjugates and immunotoxins. Recent Pat Anti-cancer Drug Discov. 2014;9(1):35–65.

    CAS  Google Scholar 

  84. Woo JH, Bour SH, Dang T, Lee YJ, Park SK, Andreas E, Kang SH, Liu JS, Neville DM, Jr., Frankel AE. Preclinical studies in rats and squirrel monkeys for safety evaluation of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1). Cancer Immunol Immunother. 2008;57(8):1225–39. doi:10.1007/s00262-008-0457-x.

    Article  CAS  PubMed  Google Scholar 

  85. Schindler J, Gajavelli S, Ravandi F, Shen Y, Parekh S, Braunchweig I, Barta S, Ghetie V, Vitetta E, Verma A. A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol. 2011;154(4):471–6. doi:10.1111/j.1365-2141.2011.08762.x.

    Article  CAS  PubMed  Google Scholar 

  86. Pagliaro LC, Liu B, Munker R, Andreeff M, Freireich EJ, Scheinberg DA, Rosenblum MG. Humanized M195 monoclonal antibody conjugated to recombinant gelonin: an anti-CD33 immunotoxin with antileukemic activity. Clin Cancer Res. 1998;4(8):1971–6.

    CAS  PubMed  Google Scholar 

  87. FitzGerald DJ, Trowbridge IS, Pastan I, Willingham MC. Enhancement of toxicity of antitransferrin receptor antibody-Pseudomonas exotoxin conjugates by adenovirus. Proc Natl Acad Sci U S A. 1983;80(13):4134–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Bera TK, Viner J, Brinkmann E, Pastan I. Pharmacokinetics and antitumor activity of a bivalent disulfide-stabilized Fv immunotoxin with improved antigen binding to erbB2. Cancer Res. 1999;59(16):4018–22.

    CAS  PubMed  Google Scholar 

  89. Pai-Scherf LH, Villa J, Pearson D, Watson T, Liu E, Willingham MC, Pastan I. Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin Cancer Res. 1999;5(9):2311–5.

    CAS  PubMed  Google Scholar 

  90. von Minckwitz G, Harder S, Hovelmann S, Jager E, Al-Batran SE, Loibl S, Atmaca A, Cimpoiasu C, Neumann A, Abera A, Knuth A, Kaufmann M, Jager D, Maurer AB, Wels WS. Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas. Breast Cancer Res. 2007;7(5):R617–26. doi:10.1186/bcr1264.

    Article  Google Scholar 

  91. Hassan R, Bullock S, Premkumar A, Kreitman RJ, Kindler H, Willingham MC, Pastan I. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res. 2007;13(17):5144–9. doi:10.1158/1078-0432.CCR-07-0869.

    Article  CAS  PubMed  Google Scholar 

  92. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer. 2008;44(1):46–53. doi:10.1016/j.ejca.2007.08.028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Kreitman RJ, Hassan R, Fitzgerald DJ, Pastan I. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res. 2009;15(16):5274–9. doi:10.1158/1078-0432.CCR-09-0062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Pak Y, Zhang Y, Pastan I, Lee B. Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res. 2012;72(13):3143–52. doi:10.1158/0008-5472.CAN-11-3925.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Di Paolo C, Willuda J, Kubetzko S, Lauffer I, Tschudi D, Waibel R, Pluckthun A, Stahel RA, Zangemeister-Wittke U. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin Cancer Res. 2003;9(7):2837–48.

    CAS  PubMed  Google Scholar 

  96. Kowalski M, Guindon J, Brazas L, Moore C, Entwistle J, Cizeau J, Jewett MA, MacDonald GC. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guerin. J Urol. 2012;188 (5):1712–8. doi:10.1016/j.juro.2012.07.020.

    Article  CAS  PubMed  Google Scholar 

  97. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 2010;12(8):871–81. doi:10.1093/neuonc/nop054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol. 2003;65(1):3–13

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Council for Scientific and Industrial Research (CSIR) for funding their research work. Sudarshan Gadadhar acknowledges CSIR for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali A. Karande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gadadhar, S., Karande, A. (2015). Targeted Cancer Therapy: History and Development of Immunotoxins. In: Verma, R., Bonavida, B. (eds) Resistance to Immunotoxins in Cancer Therapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-17275-0_1

Download citation

Publish with us

Policies and ethics