Skip to main content

Brain Gangliosides, Bio-Electrical Activity and Post-Stimulation Effects

  • Conference paper
Gangliosides and Modulation of Neuronal Functions

Part of the book series: NATO ASI Series ((ASIH,volume 7))

Abstract

In discussing the possible functional role of gangliosides in the nervous system, there exists general agreement about the fact that the primary task of these glycosphingolipids is neither to interact with bacterial toxins (e. g. from cholera, tetanus, botulinum), nor with peculiar types of virus (Sendai), nor with other exogenous neurotoxic substances, such as tubocurarine. These ganglioside interactions represent obviously secondary functional phenomena,which came about during the process of co-evolution between vertebrates and lower organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stoclet JC (1981) An ubiquitous protein which regulates calcium-dependent cellular functions and calcium move ments, Biochem Pharmacol 30: 1723–1729

    Article  PubMed  CAS  Google Scholar 

  2. Nishizuka Y (1984) Phospholipid turnover in signal transduction. Proc Int Conf Biochem Lipids, Antwerp, pp 27– 28

    Google Scholar 

  3. Partington CR, Daly JM (1978) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol Pharmacol 15: 484–491

    Google Scholar 

  4. Goldenring JR, Otis LC, Yu RK, De Lorenzo RJ (1985) Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem 44: 1229–1234

    Article  PubMed  CAS  Google Scholar 

  5. Tsuji S, Nakajima J, Sasaki T, Nagai Y (1985) Bioactive gangliosides: IV. Ganglioside GQlb/Ca2+ dependent prote in kinase activity exists in the plasma membrane fraction of neuroblastoma cell line GOTO. J Biochem 97: 969–972

    PubMed  CAS  Google Scholar 

  6. Rahmann H, Rösner H, Breer H (19 75) Sialoglycomacromolecules in synaptic transmission and memory formation. IRCS Med Sci Forum 3: 110–112

    Google Scholar 

  7. Rahmann H (1976) Neurobiologie. UTB Ulmer Stuttgart

    Google Scholar 

  8. Rahmann H, Rösner H, Breer H (1976) A functional model of sialoglyco-macromolecules in synaptic transmission and memory formation. J theor Biol 57: 231–237

    Article  PubMed  CAS  Google Scholar 

  9. Rahmann H, Probst W, Mühleisen M (1982) Gangliosides and synaptic transmission. Japan J exp Med 52: 275–286

    CAS  Google Scholar 

  10. Rahmann H (1983) Functional implication of gangliosides in synaptic transmission. Neurochem Int 5: 539–547

    Article  PubMed  CAS  Google Scholar 

  11. Rahmann H (1985) Gedächtnisbildung durch molekulare Bahnung in Synapsen mit Gangliosiden. Funkt Biol Med 4: 249–261

    CAS  Google Scholar 

  12. Svennerholm L (1980) Gangliosides and synaptic transmission. Adv Exp Med Biol, New York 533–544

    Google Scholar 

  13. Tettamanti G, Preti A, Cestaro B, Masserini M, Sonnino S, Ghidoni R (1980) Gangliosides and associated enzymes at the nerve-ending membrane. In: Sweely CC (ed): Cell sur face glycolipids. AGS Symp Ser 128, 321–343

    Google Scholar 

  14. Veh RW, Sander M (1981) Differentiation between gangliosides and sialyllactose sialidases in human tissue. Perspect Inher Met Dis 4: 71–109

    Google Scholar 

  15. Maggio B, Cumar FA, Caputto R (1981) Molecular behavior of glycosphingolipids in interfaces. Possible participation in some properties of nerve membranes. Biochim Biophys Acta 650: 69–87

    PubMed  CAS  Google Scholar 

  16. Leskawa KC, Rosenberg A (1981) The organization of gangliosides and other lipid components in synaptosomal plasma membranes and modifying effects of calcium ions. Cell Molec Neurobiol 1: 373–388

    Article  PubMed  CAS  Google Scholar 

  17. James F, Fotherby K (1963) Distribution in brain of lipid-bound sialic acid and factors affecting its concentration. J Neurochem 10: 587–592

    Article  PubMed  CAS  Google Scholar 

  18. Brunngraber E (1979) Neurochemistry of aminosugars. Neurochemistry and Neuropathology of the Complex Carbohydrates. Ch Thomas Publ, Springfield Illinois

    Google Scholar 

  19. Lowden JA, Wolfe LS (1964) Studies on brain gangliosides. IV. The effect of hypercapnia on gangliosides in vivo. Can J Biochem 42: 1703–1710

    Article  PubMed  CAS  Google Scholar 

  20. Holm MR (1968) The effect of hypercapnia in vivo on rat brain gangliosides. J Neurochem 15: 821–825

    Article  PubMed  CAS  Google Scholar 

  21. Kaufer JN, Bradley RM, Gal AE (1967) Effect of puromycin on the incorporation of erythro DL-3H-sphingosine into sphingolipids in vivo. J Neurochem 14: 1095–1098

    Article  Google Scholar 

  22. McCluer RH, Agranoff BW (1972) Studies on gangliosides of goldfish brain. J Neurochem 19: 2307–2315

    Article  PubMed  CAS  Google Scholar 

  23. Whisler KE, Tews JK, Stone WE (1968) Cerebral amino acids and lipids in drug-induced status epilepticus. Neurochem 15: 215–220

    Article  CAS  Google Scholar 

  24. Westmoreland BF, Hanna GR, Bass NH (1972) Cortical alterations in zones of secondary epileptogenesis: A neuro-physiology, morphologic and microchemical correlation study in the albino rat. Brain Res 43: 485–499

    Article  PubMed  CAS  Google Scholar 

  25. Winter E, Bernheimer H (1975) Brain gangliosides in drug-induced status epilepticus. Neurochem 24: 591–592

    Article  CAS  Google Scholar 

  26. Yohe HC, Ueno K, Chang NC, Glaser GH, Yu RK (1980) Incorporation of N-acetylmannosamine into rat brain sub-cellular gangliosides: effect of pentylenetetrazol-induced convulsions on brain gangliosides. J Neurochem 34: 560–568

    Article  PubMed  CAS  Google Scholar 

  27. Karpiak SE, Graf L, Rapport MM (1976) Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 194: 735–737

    Article  PubMed  CAS  Google Scholar 

  28. Edel-Harth S, Dreyfus H, Bosch P, Rebel G, Urban PF, Mandel P (1973) Gangliosides of whole retina and rod outer segments. FEBS Lett 35: 284–288

    Article  PubMed  CAS  Google Scholar 

  29. Dreyfus H, Urban PF, Bosch P, Edel-Harth S, Rebel G, Mandel P (1974) Effect of light on gangliosides from calf retina and photoreceptors. J. Neurochem 22: 1073–1078

    Article  PubMed  CAS  Google Scholar 

  30. Dreyfus H, Harth S, Urban PF, Mandel P (1976) Stimulation of chick retinal ganglioside synthesis by light. Vision Res 16: 1365–1369

    Article  PubMed  CAS  Google Scholar 

  31. Maccioni AHR, Giménez MS, Caputto R (1971) The labeling of the gangliosidic fraction from brains of rats exposed to different levels of stimulation after injection of 6-3H-Glucosamine. Neurochem 18: 2363–2370

    Article  CAS  Google Scholar 

  32. Maccioni AHR, Giménez MS, Caputto BL, Caputto R (1974) Labeling of the ganglioside fraction from brains of chickens exposed to different levels of stimulation after injection of 6-3H-glucosamine. Brain Res 73:503– 511

    Article  PubMed  CAS  Google Scholar 

  33. Caputto BL, Maccioni AHR, Caputto R (1975) Light inhibits the labeling of gangliosides in chicken retina. Nature 3092

    Google Scholar 

  34. Caputto BL, Maccioni AHR, Landa CA, Caputto R (1979) Effect of light on the labeling of optic tectum gangliosides after an intraocular injection of N-3H-acetyl- mannosamine. Biochem Biophys Comm 86: 849–854

    Article  CAS  Google Scholar 

  35. Caputto BL, Nores GA, Cemborain BN, Caputto R (1982) The effect of light exposure following an intraocular injection of 3H-N-acetylmannosamine on the labeling of gangliosides and glycoproteins of retina ganglion cells and optic tectum of singly caged chickens. Brain Res. 245: 231–238

    Article  PubMed  CAS  Google Scholar 

  36. Marchionatti AM, Caputto BL, Caputto R (1984) Short term labeling of proteins, gangliosides and glycoproteins of the optic tract of chickens exposed to light or darkness. Neurochem Int 6: 259–263

    Article  PubMed  CAS  Google Scholar 

  37. Caputto BL, Caputto R (1986) Optic nerve integrity is required for light to affect retina ganglion cell gangliosides. Neurochem Res 11: 1083–1089

    Article  PubMed  CAS  Google Scholar 

  38. Rahmann (1979) The possible functional role of gangliosides for synaptic transmission and memory formation. Ab- hdlg Akad. Wiss DDR, Berlin 83–110

    Google Scholar 

  39. BäBβBler G, Hilbig R, Rahmann H (1983) Influence of electrical stimulation and deprivation on the electric organ discharge behaviour and metabolism of neuronal gangliosides of the tapirfish (Gnathonemus petersii, mormyri- dae, teleostei) Comp Biochem Physiol 76A: 85–93

    Google Scholar 

  40. Myllek C, Hilbig R, Rahmann H (1987) Autoradiographic investigations on the influence of weak electric stimulation or deprivation on the incorporation of 3H-N-ace- tylmannosamine into the brain of the electric tapir- fish. (in press)

    Google Scholar 

  41. Irwin LN, Samson FE (1971) Content and turnover of gangliosides in rat brain following behavioral stimulation. J Neurochem 18: 203–211

    Article  PubMed  CAS  Google Scholar 

  42. Dunn AJ, Hogan EL (1975) Brain gangliosides: increased incorporation of 1-3H glucosamine during training. Pharm Biochem Behav 3: 605–612

    Article  CAS  Google Scholar 

  43. Savaki HE, and Levis GM (1977) Changes in rat brain gangliosides following active avoidance conditioning. Pharm Biochem Behav 7: 7–12

    Article  CAS  Google Scholar 

  44. Rahmann H, Breer H (1975) Possible role of neuronal transport of low molecular compounds in the CNS of teleosts. Brain Res 85: 301–305

    Article  PubMed  CAS  Google Scholar 

  45. Breer H, Rahmann H (1976) Involvement of brain gangliosides in temperature adaptation of fish. J therm Biol 1: 223–235

    Article  Google Scholar 

  46. Hilbig R, Rahmann H, Rosner H (1979) Brain gangliosides and temperature adaptation in eury- and stenothermic teleost fish (carp and rainbow trout). J therm Biol 4: 29–34

    Article  CAS  Google Scholar 

  47. Rösner H, Breer H, Hilbig R, Rahmann H (1979) Temperature effects on the incorporation of sialic acid into gangliosides and glycoproteins of fish brain. J therm Biol 4: 69–73

    Article  Google Scholar 

  48. Rösner H, Segler K, Rahmann H (1979) Changes of brain gangliosides in chicken and mice during heterothermic development. J therm Biol 4: 121–124

    Article  Google Scholar 

  49. Hilbig R, Rahmann H (1979) Changes in brain ganglioside composition of normothermic and hibernating golden hamsters. Comp Biochem Physiol 62B: 527–531

    CAS  Google Scholar 

  50. Geiser F, Hilbig R, Rahmann H (1981) Hibernation induced changes in the ganglioside composition of dormice ( Glis glis ). J therm Biol 6: 145–151

    Article  CAS  Google Scholar 

  51. Robert J, Montaudon D, Dubourg L, Rebel G, Miro J, Canguilhem B (1982) Changes in lipid composition of the brain cellular membranes of an hibernating mammal during its circannual rhythm. Comp J Physiol 71B: 409–416

    CAS  Google Scholar 

  52. Demediuk P, Moscatelli EA (1983) Synaptosomal and brain mitochondrial lipids in hibernating and cold-acclimated golden hamsters. J Neurochem 40: 1100–1105

    Article  PubMed  CAS  Google Scholar 

  53. Mühleisen M, Hilbig R, Rahmann H (1984) Brain gangliosides in hibernating dormice (Glis Glis) and cold-exposed laboratory mice.Comp Biochem Physiol 78B: 335–341

    Google Scholar 

  54. Sonnino S, Ghidoni R, Malesci A, Tettamanti G, Marx J, Hilbig R, Rahmann H (1984) Nervous system ganglioside composition of normothermic and hibernating dormice (Glis glis) Neurochem Int 6: 677–683

    PubMed  CAS  Google Scholar 

  55. Mühleisen M, Hilbig R, Marx J, Rahmann H (1985) Seasonal differences in brain gangliosides of the Djungarian Hamster (Phodopus sungorus) J therm Biol 10: 119–124

    Google Scholar 

  56. Marx J (1985) Saisonale und temperaturbedingte Änderungen von Sialoglykokonjugaten im Zentralnervensystem von Feldhamstern (Cricetus cricetus L) Dissertation Zoolog Inst Univ Hohenheim

    Google Scholar 

  57. Beitinger H, Probst W, Hilbig R, Rahmann H (1986) Seasonal variability of sialo-glycoconjugates in the brain of the Djungarian hamster (Phodopus sungorus) Comp Biochem Physiol (in press)

    Google Scholar 

  58. Swoboda H (1986) Biochemische Untersuchungen zur Aktivität endogener Neuraminidase im ZNS von Wirbeltieren. Staats-examensarbeit Univ Hohenheim

    Google Scholar 

  59. McIlwain H (1963) Chemical exploration of the brain: A study of cerebral excitability and ion movement. Elsevier Amsterdam

    Google Scholar 

  60. Frankenhäuser B, Ryan KJ, Arhem P (1976) The effects of neuraminidase and protamine chloride on potential clamp parameters of the node of Ranvier ( Xenopus laevis ). Acta physiol Scand 96: 548–557

    Article  Google Scholar 

  61. Römer H, Rahmann H (1979) Effects of exogenous neuraminidase on unit activity in frog spinal cord and fish optic tectum. Exp Brain Res 34: 49–58

    Article  PubMed  Google Scholar 

  62. Seifert W, Hollmann M, Wieraszko A (1986) A functional role for ganglioside GM1 in synaptic transmission and synaptic plasticity of the rat hippocampus. Advances in the Biosciences 59: 247–253

    CAS  Google Scholar 

  63. Wieraszko A, Seifert W (1986) Evidence for the functional role of monosialoganglioside GM1 in synaptic transmission in the rat hippocampus. Brain Res 371: 305–313

    Article  PubMed  CAS  Google Scholar 

  64. Wieraszko A, Seifert W (1984) Evidence for a functional role of gangliosides in synaptic transmission: studies on rat brain striatal slices. Neurosci Lett 52: 123–128

    Article  PubMed  CAS  Google Scholar 

  65. Hall A, Carpenter DO, Rahmann H (1987) Effects of GM1 on Aplysia neurons. In Gangliosides and Modulation of neuronal functions. Rahmann H (ed) Springer Heidelberg pp

    Google Scholar 

  66. Beitinger H, Probst W, Rahmann H, Schwarzmann G, Möbius D (1987) Influence of Ca2+ and temperature changes on the surface requirement of gangliosides and phospholipids in monolayers. In Gangliosides and modulation of neuronal functions. Rahmann H (ed) Springer Heidelberg pp

    Google Scholar 

  67. Probst W, Möbius D, Rahmann H (1984) Modulatory effects of different temperatures and Ca2+-concentrations on gangliosides and phospholipids in monolayers at air/water interfaces and their possible functional role. Cell Mol Neurobiol 4: 157–176

    Article  PubMed  CAS  Google Scholar 

  68. Probst W (1986) Electron-microscopical evidence for extracellular calcium deposits in the synaptic cleft. Histochem 85: 231–239

    Article  CAS  Google Scholar 

  69. Rahmann H, Probst W (1986) Ultrastructural localization of calcium at synapses and modulatory interactions with gangliosides. In Gangliosides and Neuronal Plasticity. Edited by Tettamanti G, Ledeen RW, Sandhoff K, Nagai Y, Toffano G, Padova pp 63–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahmann, H. (1987). Brain Gangliosides, Bio-Electrical Activity and Post-Stimulation Effects. In: Rahmann, H. (eds) Gangliosides and Modulation of Neuronal Functions. NATO ASI Series, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71932-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71932-5_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71934-9

  • Online ISBN: 978-3-642-71932-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics