Skip to main content

Application, Limitations and Research Requirements of in Vitro Test Systems in Toxicology

  • Conference paper
Toxic Interfaces of Neurones, Smoke and Genes

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 9))

Abstract

There is increasing application of in vitro-test systems for toxicological evaluation of chemicals, which became possible by increasing understanding of the biological endpoints present in such systems and their capability for metabolic activation and inactivation. This communication focusses on the capacities of metabolic activation and inactivation in mutagenicity test systems, using bacteria, mammalian cells in culture and isolated hepatocytes. Bacterial test procedures with S-9-fraction are specific metabolic activation systems with low inactivation capacity. Mammalian cells are either deficient in metabolic activities or contain only limited activation capacity although special cell lines derived from hepatoma cells express certain metabolic activation as well as inactivation reactions. Isolated hepatocytes contain enzymatic activities similar to those in the intact liver, which however decrease at different rates. It is the goal of present research to construct cell lines with defined and sufficient activities of these enzymes.

In isolated hepatocytes chemically induced DNA repair can be readily detected when a clear discrimination between mitochondrial, semiconservative and repair synthesis is provided. In such systems genotoxicity of reactive oxygen species is decreased by physiological concentrations of alpha-ketoacids, pyruvate possessing the highest antioxidant activity. It is concluded that in vitro test systems provide a suitable tool for detecting genotoxic and toxic effects of chemicals. However, many biological parameters such as metabolic activity, degree of differentiation of the cells, cofactor requirement, and composition of the medium affect the reliability of the test system. Thus, only a detailed understanding of the biology and biochemistry of such test allow production of reliable and reproducible results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. Mutation Res 31: 347–361

    PubMed  CAS  Google Scholar 

  • Andrae U, Schwarz LR (1981) Induction of DNA repair synthesis in isolated rat hepatocytes by 5-diazouracil and other DNA damaging compounds. Cancer Letters 13: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Andrae U, Singh J, Ziegler-Skylakakis K (1985) Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Letters 28: 93–98

    Article  CAS  Google Scholar 

  • Bates DJ, Foster AB, Jarman M (1981) The metabolism of cyclophosphamide by isolated rat hepatocytes. Biochem Pharmacol 30: 3055–3063

    Article  PubMed  CAS  Google Scholar 

  • Begue JM, Guguen-Guillouzo C, Pasdeloup N, Guillouzo A (1984) Prolonged maintenance of active cytochrome P-450 in adult rat hepatocytes co-cultured with another liver cell type. Hepatology Vol 4, No 5: 839–842

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti R (1977) A selective system for hepatoma cells producing gluconeogenic enzymes. Som Cell Genetics 3: 365–380

    Article  CAS  Google Scholar 

  • Billings RE, McMahon RE, Ashmore J, Wagle SR (1977) The metabolism of drugs in isolated rat hepatocytes. Drug Metab Dispos 5: 518–526

    PubMed  CAS  Google Scholar 

  • Bock KW, Bock-Henning BS, Lilienblum W, Volp RF (1981) Release of mutagenic metabolites of benzo(a)pyrene from the perfused rat liver after inhibition of glucuronidation and sulfation by salicylamide. Chem-Biol Interactions 36: 167–177

    Article  CAS  Google Scholar 

  • Bunton CA (1949) Oxidation of alpha-diketones and alpha-keto-acids by hydrogen peroxide. Nature 163: 444

    Article  CAS  Google Scholar 

  • Cunningham ML, Lokesh BR (1983) Superoxide anion generated by potassium superoxide is cytotoxic and mutagenic to Chinese hamster ovary cells. Mutat Res 121: 299–304

    Article  PubMed  CAS  Google Scholar 

  • Czygan P, Greim H, Garro AJ, Hutterer F, Schaffner F, Popper H, Rosenthal O, Cooper DY (1973) Microsomal metabolism of dimethylnitrosamine and the cytochrome P-450-dependency of its activation to a mutagen. Cancer Res 33: 2983–2986

    PubMed  CAS  Google Scholar 

  • Decad GM, Hsieh DPH, Byard JL (1977) Maintenance of cytochrome P-450 and metabolism of aflatoxin B1 in primary hepatocyte cultures. Biochem Biophys Res Commun 78: 279–287

    Article  PubMed  CAS  Google Scholar 

  • Deschatrette J, Weiss MC (1974) Characterization of differentiated and dedifferentiated clones of a rat hepatoma. Biochim 56: 1603–1611

    Article  CAS  Google Scholar 

  • Deschatrette J, Moore EE, Dubois M, Cassio S, Weiss MC (1979) Dedifferentiated variants of a rat hepatoma: Analysis by cell hybridization. Som Cell Genetics 5: 697–718

    Article  CAS  Google Scholar 

  • Deschatrette J, Moore EE, Dubois M, Weiss MC (1980) Dedifferentiated variants of a rat hepatoma: Reversion analysis. Cell 19: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Dybing E, Soderlund E, Timm-Haug L, Thorgeirsson SS (1979) Metabolism and activation of 2-acetylaminofluorene in isolated rat hepatocytes. Cancer Res 39: 3268–3275

    PubMed  CAS  Google Scholar 

  • Dybing E, Soderlund E, Timm-Haug L, Thorgeirsson SS (1979) Metabolism and activation of 2-acetylaminofluorene in isolated rat hepatocytes. Cancer Res 39: 3268–3275

    PubMed  CAS  Google Scholar 

  • Glatt HR, Bilting R, Platt KL, Oesch F (1981) Improvement of the correlation of bacterial mutagenicity with carcinogenicity of benzo(a)pyrene and four of its major metabolites by activation with intact liver cells instead of cell homogenates. Cancer Res 41: 270–277

    PubMed  CAS  Google Scholar 

  • Greim H, Andrae U, Göggelmann W, Hesse S, Schwarz LR, Summer K-H (1982) Threshold levels in toxicology: Significance of inactivation mechanism. In: Snyder, Parke, Kocsis, Jollow, Gibson, Witmer (eds) Biological Reactive Intermediates-II, Part B. Plenum Publishing Corp, pp 1389–1398

    Google Scholar 

  • Guenthner TM, Hammock BD, Vogel U, Oesch F (1981) Cytosolic and microsomal epoxide hydrolases are immunologically distinguishable from each other in the rat and mouse. J Biol Chem 256: 3163–3166

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14

    PubMed  CAS  Google Scholar 

  • Ito A, Watanabe H, Naito M, Naito Y (1981) Induction of duodenal tumors in mice by oral administration of hydrogen peroxide. Gann 72: 174–175

    PubMed  CAS  Google Scholar 

  • Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation. Experientia 37: 1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Lonati-Galligani M, Lohman PHM, Berends F (1983) The validity of the autoradiographic method for detecting DNA repair synthesis in rat hepatocytes in primary culture. Mutat Res 113: 145–160

    PubMed  CAS  Google Scholar 

  • Loquet C, Wiebel EI (1982) Geno-and cytotoxicity of nitrosamines, aflatoxin B1, and benzo(a)pyrene in continuous cultures of rat hepatoma cells. Carcinogenesis 3: 1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Mailing HV (1971) Dimethylnitrosamine: Formation of mutagenic compounds by interaction with mouse liver microsomes. Mutation Res 13: 425–429

    Article  Google Scholar 

  • Marquardt H, Heidelberger D (1972) Influence of “feeder cells” and inducers and inhibitors of microsomal mixed-function oxidase on hydrocarbon-induced malignant transformation of cells derived from C3H mouse prostate. Cancer Res 32: 721–725

    PubMed  CAS  Google Scholar 

  • Mattem IH, Greim H (1978) Report of a workshop on bacterial in vitromutagenicity test systems. Mutation Res 53: 369–378

    Google Scholar 

  • McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc Natl Acad Sci USA 72:5135–5139

    Article  PubMed  CAS  Google Scholar 

  • McCann J, Ames BN (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: Discussion. Proc Natl Acad Sci USA 73: 950–954

    Article  PubMed  CAS  Google Scholar 

  • McQueen CA, Williams GM (1983) The use of cells from rat, mouse, hamster, and rabbit in the hepatocyte primary culture/DNA-repair test. Ann NY Acad Sci 407: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Moldeus P, Högberg J, Orrenius S (1978) Isolation and use of liver cells. Methods Enzymol 52: 60–71

    Article  PubMed  CAS  Google Scholar 

  • Moody CS, Hassan HM (1982) Mutagenicity of oxygen free radicals. Proc Natl Acad Sci USA 79: 2855–2859

    Article  PubMed  CAS  Google Scholar 

  • Mulder GJ, Henson JA, Nelson WL, Thorgeirsson SS (1977) Role of sulfotransferase from rat liver in the mutagenicity of N-hydroxy-2-acetylaminofluorene in Salmonella typhimurium. Biochem Pharmacol 26: 1356–1358

    Article  CAS  Google Scholar 

  • Ota K, Hammock BD (1980) Cytosolic and microsomal epoxide hydrolases: Differential properties in mammalian liver. Science 207: 1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Pettijohn DE, Hanawalt PC (1964) Evidence for repair replication of ultraviolet damaged DNA in bacteria. J Mol Biol 9: 395–410

    Article  PubMed  CAS  Google Scholar 

  • Popper H, Czygan P, Greim H, Schaffner F, Garro AJ (1973) Mutagenicity of primary and secondary carcinogens altered by normal and induced hepatic microisomes. Proc Soc Exptl Biol Med 142: 727–729

    CAS  Google Scholar 

  • Rosenkranz HS, Poirier LA (1979) Evaluation of the mutagenicity and DNA modifying activity of carcinogens and non-carcinogens in microbial systems. J Natl Cancer Inst 62:873–892

    PubMed  CAS  Google Scholar 

  • Rossberger S, Andrae U (1985) DNA repair synthesis induced by N-hydroxyurea, acetohydroxamic acid, and N-hydroxyurethane in primary rat hepatocyte cultures: comparative evaluation using the autoradiographic and the bromodeoxyuridine density-shift method. Mutat Res 145: 201–207

    PubMed  CAS  Google Scholar 

  • Schwarz LR, Greim H (1981) An analytical tool in hepatotoxicology. In: Berk PD, Chalmers TC (eds) Frontiers in liver disease. Thieme-Stratton Inc, Stuttgart, New York

    Google Scholar 

  • Simmon VF (1979) In vitro mutagenicity assays of chemical carcinogens and related compounds with Salmonella typhimurium. J Natl Cancer Inst 62: 893–899

    PubMed  CAS  Google Scholar 

  • Simmon VF, Rosenkranz HS, Zeiger E, Poirier LA (1979) Mutagenic activity of chemical carcinogens and related compounds in the intraperitoneal host-mediated assay. J Natl Cancer Inst 62: 911–918

    PubMed  CAS  Google Scholar 

  • Sina JF, Bean CL, Dysart GR, Taylor VI, Bradley MO (1983) Evaluation of the alkaline elution/rat hepatocyte assay as a predictor of carcinogenic/mutagenic potential. Mutat Res 113: 357–391

    PubMed  CAS  Google Scholar 

  • Summer KH, Göggelmann W, Greim H (1980) Glutathione and glutathion-S-transferase in the Salmonella mammalian-microsome mutagenicity test. Mutation Res 70: 269–278

    Article  PubMed  CAS  Google Scholar 

  • Summer KH, Wiebel FJ (1981) Glutathione and glutathione S-transferase activities of mammalian cells in culture. Toxicol Letters 9: 409–413

    Article  CAS  Google Scholar 

  • Vadi H, Moldeus P, Capdevila J, Orrenius S (1975) The metabolism of benzo(a)pyrene in isolated rat cells. Cancer Res 35: 2083–2091

    PubMed  CAS  Google Scholar 

  • Wiebel FJ, Singh J (1980) Monooxygenase and UDP-glucuronyltransferase activities in established cell cultures. Arch Toxicol 44: 85–97

    Article  PubMed  CAS  Google Scholar 

  • Wiebel FJ, Brown S, Waters HL, Selkirk JK (1977) Activation of xenobiotics by monooxygenases: Cultures of mammalian cells as analytical tool. Arch Toxicol 39: 133–148

    Article  PubMed  CAS  Google Scholar 

  • Wiebel FJ, Lambiotte M, Summer KH, Wolff T (1980a) Established cell cultures as model systems for carcinogen metabolism In Pullman B, Tso POP, Gelboin H (eds) Carcinogenesis: Fundamental Mechanisms of Environmental Effects. D Reidel Publishing Company, pp 347–361

    Chapter  Google Scholar 

  • Wiebel FJ, Singh J, Schindler E, Summer KH (1980b) UDP-Glucuronosylphenol-, sulfo-, and gluta- thione S-transferase activities of mammalian cells in permanent culture. Toxicology 17: 123–126

    Article  CAS  Google Scholar 

  • Wiebel FJ, Wolff T, Lambiotte M (1980c) Presence of cytochrome P-450 and cytochrome P-448 dependent monooxygenase functions in hepatoma cell lines. Biochem Biophys Res Comm 94: 466–472

    Article  CAS  Google Scholar 

  • Wiebel FJ, Kiefer F, Murdia US (1984a) Phenobarbital induces cytochrome P-450- and cytochrome P-448-dependent monooxygenase in rat hepatoma cells. Chem-Biol Interactions 52: 151–162

    Article  CAS  Google Scholar 

  • Wiebel FJ, Lambiotte M, Singh J, Summer KH, Wolff T (1984b) Expression of carcinogen-metabolizing enzymes in continuous cultures of mammalian cells. In: Greim H, Jung R, Kramer M, Marquardt H, Oesch F (eds) Biochemical Basis of Chemical Carcinogenesis. Raven Press, New York, pp 77–88

    Google Scholar 

  • Wiebel FJ, Park SS, Kiefer F, Gelboin HV (1984c) Expression of cytochromes P-450 in rat hepatoma cells. Analysis by monoclonal antibodies specific for cytochromes P-450 from rat liver induced by 3methylcholanthrene or phenobarbital. Eur J Biochem 145: 455–462

    Article  CAS  Google Scholar 

  • Wishart GJ (1978) Functional heterogenicity of UDP-Glucuronosyl-transferase as indicated by its differential development and inducibility by glucocorticoids. Demonstration of two groups within the enzyme’s activity towards twelve substrates. Biochem J 174: 485–489

    PubMed  CAS  Google Scholar 

  • Wolff T, Deml W, Wanders H (1979) Aldrin epoxidation, a highly sensitive indicator specific for cytochrome P-450 dependent mono-oxygenase activities. Drug Metab Dispos 7: 301–305

    PubMed  CAS  Google Scholar 

  • Wolff T, Greim H, Huang MT, Miwa GT, Lu AYH (1980) Aldrin epoxidation catalyzed by purifiedrat-liver cytochromes P-450 and P-448. Eur J Biochem 111: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Williams GM (1976) Carcinogen-induced DNA repair in primary rat liver cell cultures: a possible screen for chemical carcinogens. Cancer Lett 1: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Williams GM (1977) The detection of chemical carcinogenesis by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res 37: 1845–1851

    PubMed  CAS  Google Scholar 

  • Ziegler-Skylakakis K, Rossberger S, Andrae U (1985) Thiourea induces DNA repair synthesis in primary rat hepatocyte cultures and gene mutations in V79 Chinese hamster cells. Arch Toxicol 58: 5–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Greim, H., Andrae, U., Forster, U., Schwarz, L. (1986). Application, Limitations and Research Requirements of in Vitro Test Systems in Toxicology. In: Chambers, C.M., Chambers, P.L., Tuomisto, J. (eds) Toxic Interfaces of Neurones, Smoke and Genes. Archives of Toxicology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71248-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71248-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16589-7

  • Online ISBN: 978-3-642-71248-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics