Skip to main content
Log in

Dedifferentiated variants of a rat hepatoma: Analysis by cell hybridization

  • Published:
Somatic Cell Genetics

Abstract

Two independent dedifferentiated variants, H5 and Faofl C2, derived from the Reuber H35 hepatoma, produce transacting diffusible substance(s) that extinguish the expression of liver-specific proteins when hybridized with a well-differentiated cell line of the same origin (Fao and Fu5-5, respectively). H5 x Fao hybrids show total and stable extinction of four liver functions and clonal variability in the expression of three others. FaoflC2 × Fu5-5 hybrids are initially flat (like FaoflC2 cells), and die in glucose-free medium where survival requires expression of hepatic gluco-neogenic enzymes, but then evolve to hepatoma-like and finally round morphology; these latter cells express all liver functions analyzed including the gluconeogenic enzymes. Two exceptional clones that remained flat long enough for complete analysis showed extinction of all hepatic functions not expressed by FaoflC2 cells. We conclude that this transitory extinction reflects the action and then loss of extinguishing factor(s) contributed by FaoflC2. When crossed with BW1- J mouse hepatoma cells, FaoflC2 causes stable extinction of mouse aldolase B. We propose that production of extinguishing factor(s) is the rule for dedifferentiated variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Forquignon, F., and Ephrussi, B. (1979).Somat. Cell Genet. 5:409–426.

    Google Scholar 

  2. Deschatrette, J., and Weiss, M. C. (1975).Biochimie 56:1603–1611.

    Google Scholar 

  3. Schimke, R. T., Kaufman, R. J., Alt, F. W., and Kellems, R. F. (1978).Science 202:1051–1055.

    Google Scholar 

  4. Azumi, J. I., and Sachs, L. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:253–257.

    Google Scholar 

  5. Lotem, J., and Sachs, L. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:3781–3785.

    Google Scholar 

  6. Loomis, W. F., Wahrman, J. P., and Luzzati, D. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:425–429.

    Google Scholar 

  7. Eisen, H., Keppel-Ballivet, F., Georgapoulos, C. P., Sassa, S., Granick, J., Pragnell, I., and Ostertag, W. (1978). InDifferentiation of Normal and Neoplastic Hematopoietic Cells. (Cold Spring Harbor Laboratory, Cold Spring Harbor) pp. 277–294.

    Google Scholar 

  8. Reuber, M. D. (1961).J. Natl. Cancer Inst. 26:891–899.

    Google Scholar 

  9. Pitot, J. C., Peraino, C., Moore, P. A., and Potter, V. R. (1964)Natl. Cancer Inst. Monogr. 13:229–246.

    Google Scholar 

  10. Deschatrette, J., and Weiss, M. C. (1975).Somat. Cell Genet. 1:279–292.

    Google Scholar 

  11. Szpirer, C., and Szpirer, J. (1975).Differentiation 4:85–91.

    Google Scholar 

  12. Coon, H. G., and Weiss, M. C. (1969).Proc. Natl. Acad. Sci. U.S.A. 62:852–859.

    Google Scholar 

  13. Ham, R. G. (1965).Proc. Natl. Acad. Sci. U.S.A. 53:288–293.

    Google Scholar 

  14. Bertolotti, R. (1977).Somat. Cell Genet. 3:365–380.

    Google Scholar 

  15. Rothfels, K. H., and Siminovitch, L. (1958).Stain Technol.,33:73–79.

    Google Scholar 

  16. Diamondstone, T. I. (1966).Anal. Biochem. 16:395–401.

    Google Scholar 

  17. Schneider, J. A., and Weiss, M. C. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:127–131.

    Google Scholar 

  18. Sparkes, R. S., and Weiss, M. C. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:377–381.

    Google Scholar 

  19. Segal, H. L., and Matsuzawa, T. (1970). InMethods in Enzymology, (eds.) Colowick, S. P., and Kaplan, N. O. (Academic Press, New York), Vol. XVIIA, pp. 153–159.

    Google Scholar 

  20. Olmo, S., Stenius, C., Christian, L., Harris, C., and Yvey, C. (1970).Biochem. Genet. 4:565–577.

    Google Scholar 

  21. Bertolotti, R., and Weiss, M. C. (1972).Biochimie 54:195–201.

    Google Scholar 

  22. Bertolotti, R., and Weiss, M. C. (1972).J Cell. Physiol. 79:211–223.

    Google Scholar 

  23. Meera Khan P. (1971).Arch. Biochem. Biophys. 145:470–483.

    Google Scholar 

  24. Ballard, B. J., and Hanson, R. W. (1967).Biochem. J. 104:866–871.

    Google Scholar 

  25. Traniello, S., Melloni, E., Pontremoli, S., Sia, C. L., and Horecker, B. L. (1972).Arch. Biochem. Biophys. 149:222–231.

    Google Scholar 

  26. Lane, M. D., Chang, H. C., and Miller R. S. (1969). InMethods in Enzymology. (eds.) Colowick, S. P., and Kaplan, N. O. (Academic Press, New York), Vol. XIII, pp. 270–277.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951)J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Laurell, C. B. (1966).Anal. Biochem. 15:45–52.

    Google Scholar 

  29. Fougére, C., and Weiss, M. C. (1978).Cell 15:843–854.

    Google Scholar 

  30. Croce, C. M., Litwack, G., and Koprowski, H. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1268–1272.

    Google Scholar 

  31. Benoff, S., Bruce, S. A., and Skoultchi, A. I. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:4354–4358.

    Google Scholar 

  32. Cassio, D., and Weiss, M. C. (1979).Somat. Cell Genet. 5:719–738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to our mentor, Boris Ephrussi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschatrette, J., Moore, E.E., Dubois, M. et al. Dedifferentiated variants of a rat hepatoma: Analysis by cell hybridization. Somat Cell Mol Genet 5, 697–718 (1979). https://doi.org/10.1007/BF01542636

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542636

Keywords

Navigation