Skip to main content

Biosynthesis of the Tetracyclines

  • Chapter
The Tetracyclines

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 78))

Abstract

Research on the biosynthesis of tetracyclines, which has developed rapidly since the discovery of chlortetracycline (Duggar 1948), oxytetracycline (Finlay et al. 1950), and the biological synthesis of tetracycline (Minieri et al. 1954), can be divided into several historical phases. The first tempestuous phase of the study of the technology of tetracycline fermentation occurred in the fifties; the results of studies from this period are surveyed in an excellent review by Di Marco and Pennella (1959). The sixties were characterized by the study of the building blocks and biosynthetic intermediates of tetracycline antibiotics; significant contribution in this field is due to the research team of the Lederle Laboratories headed by McCormick. Pertinent results from this period were published in several review articles (Hlavka and Boothe 1973; Mc Cormick 1967, 1969; Mitscher 1968). In the following decade, the study of tetracycline biosynthesis was focused on the elucidation of regulatory mechanisms in the biosynthesis and on deciphering the molecular nature of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alačević M (1973) Genetics of tetracycline-producing streptomycetes. In: Vaněk Z, Hošťálek Z, Cudlín J (eds) Genetics of industrial microorganisms. Actinomycetes and fungi. Academia, Prague, pp 59–70

    Google Scholar 

  • Alačević M (1976) Recent advances in Streptomyces rimosus genetics. In: Macdonald KD (ed) Second international symposium on the genetics of industrial microorganisms. Academic, London, pp 513–519

    Google Scholar 

  • Backus EJ, Duggar BM, Campbell TH (1954) Variation in Streptomyces aureofaciens. Ann NY Acad Sci 60: 86–101

    Article  PubMed  CAS  Google Scholar 

  • Bačová M, Zelinková E, Zelinka J (1971) Exocellular ribonuclease from Streptomyces aureofaciens. I. Isolation and purification. Biochim Biophys Acta 235: 335–342

    PubMed  Google Scholar 

  • Běhal V, Vaněk Z (1970) Regulation of biosynthesis of secondary metabolites. XII. Acetyl- CoA carboxylase in Streptomyces aureofaciens. Folia Microbiol (Prague) 15: 354–357

    Article  Google Scholar 

  • Běhal V, Procházková V, Vaněk Z (1969 a) Regulation of biosynthesis of secondary metabolites. II. Fatty acids and chlortetracycline in Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 112–116

    Google Scholar 

  • Běhal V, Cudlín J, Vaněk Z (1969 b) Regulation of biosynthesis of secondary metabolites. III. Incorporation of l-14C-acetic acid into fatty acids and chlortetracycline in Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 117–120

    Google Scholar 

  • Běhal V, Podojil M, Hošťálek Z, Vaněk Z, Lynen F (1974) Regulation of biosynthesis of excessive metabolites. XVI. Origin of the terminal group of tetracyclines. Folia Microbiol (Prague) 19: 146–150

    Article  Google Scholar 

  • Běhal V, Jechová V, Vaněk Z, Hošťálek Z (1977) Alternate pathways of malonylCoA formation in Streptomyces aureofaciens. Phytochemistry 16: 347–350

    Article  Google Scholar 

  • Běhal V, Hošťálek Z, Vaněk Z (1979 a) Anhydrotetracycline oxygenase activity and biosynthesis of tetracyclines in Streptomyces aureofaciens. Biotechnol Lett 1: 177–182

    Google Scholar 

  • Běhal V, Vaněk Z, Hošťálek Z, Ramadan A (1979 b) Synthesis and degradation of proteins and DNA in Streptomyces aureofaciens. Folia Microbiol (Prague) 24: 211–216

    Google Scholar 

  • Běhal V, Grégrová-Prušáková J, Hošťálek Z (1982) Effect of inorganic phosphate and benzyl thiocyanate on the activity of anhydrotetracycline oxygenase in Streptomyces aureofaciens. Folia Microbiol (Prague) 27: 102–106

    Article  Google Scholar 

  • Biffl G, Boretti G, Di Marco A, Pennella P (1954) Metabolic behaviour and chlortetracycline production by Streptomyces aureofaciens in liquid culture. Appl Microbiol 2:288– 293

    Google Scholar 

  • Birch AJ (1957) Biosynthetic relations of some natural phenolic and enolic compounds. Fortschr Chem Org Naturst 14: 186–216

    PubMed  CAS  Google Scholar 

  • Birch AJ, Snell JF, Thomson PJ (1962) Studies in relation to biosynthesis. Part XXVIII. Oxytetracycline (Terramycin). J Chem Soc 425–429

    Google Scholar 

  • Blumauerová M, Mraček M, Vondráčková J, Podojil M, Hošťálek Z, Vaněk Z (1969 a) Regulation of biosynthesis of secondary metabolites. IX. The biosynthetic activity of blocked mutants of Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 215–225

    Google Scholar 

  • Blumauerová M, Hošťálek Z, Mracek M, Podojil M, Vaněk Z (1969 b) Regulation of biosynthesis of secondary metabolites. X. Metabolic complementation of blocked mutants of Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 226–231

    Google Scholar 

  • Blumauerová M, Hošťálek Z, VanSk Z (1972) Biosynthesis of tetracyclines: Problems and perspectives of genetic analysis. In: Terui G (ed) Fermentation technology today. Society of Fermentation Technology, Osaka, pp 223–232

    Google Scholar 

  • Boretti G, Di Marco A, Scotti T, Zocchi P (1955) Variazioni morfologiche e biochimiche dello Streptomyces aureofaciens in relazione alia produzione di clorotetraciclina. G Microbiol 1: 97–105

    CAS  Google Scholar 

  • Boretti G, Di Marco A, Julita P, Raggi F, Bardi U (1956) Presenza degli enzimi della via esosomonofosfato ossidativa nello Streptomyces aureofaciens. G Microbiol 1: 406–416

    CAS  Google Scholar 

  • Borisoglebskaya AN, Perebityuk AN, Boronin AM (1979) Study on resistance of Actinomyces rimosus to oxytetracycline (in Russian). Antibiotiki 24: 883–889

    CAS  Google Scholar 

  • Boronin AM, Mindlin SZ (1971) Genetical analysis of Actinomyces rimosus mutants with the impaired synthesis of the antibiotic (in Russian). Genetika (Moscow) 7: 125–131

    CAS  Google Scholar 

  • Boronin AM, Sadovnikova LG (1972) The elimination of oxytetracycline resistance in Actinomyces rimosus by acridine dyes (in Russian). Genetika (Moscow) 8: 174–176

    CAS  Google Scholar 

  • Catlin ER, Hassal CH, Parry DR (1969) The biosynthesis of phenols. Part XVIII. Carbon- 14 labelling in rings C and D of oxytetracycline incorporating (2–14C)-acetic acid. J Chem Soc C Org Chem 1363–1366

    Google Scholar 

  • Colombo AL, Crespi-Perellino N, Grein A, Minghetti A, Spalla C (1981) Metabolic and genetic aspects of the relationship between growth and tetracycline production in Streptomyces aureofaciens. Biotechnol Lett 3: 71–76

    Article  CAS  Google Scholar 

  • Čurdová E, Křemen A, Vaněk Z, Hošťálek Z (1976) Regulation of biosynthesis of secondary metabolites. XVIII. Adenylate level and chlortetracycline production in Streptomyces aureofaciens. Folia Microbiol (Prague) 21: 481–487

    Article  Google Scholar 

  • Darken MA, Berenson H, Shirk RJ, Sjolander NO (1960) Production of tetracycline by Streptomyces aureofaciens in synthetic media. Appl Microbiol 8: 46–51

    PubMed  CAS  Google Scholar 

  • Delić V, Pigac J, Sermonti G (1969) Detection and study of cosynthesis of tetracycline antibiotics by an agar method. J Gen Microbiol 55: 103–108

    PubMed  Google Scholar 

  • Di Marco A, Pennella P (1959) The fermentation of the tetracyclines. In: Hockenhull DJD (ed) Progress in industrial microbiology, vol I. Heywood, London, pp 45–92

    Google Scholar 

  • Di Marco A, Boretti G, Julita P, Pennella P (1956) Researches on carbohydrate metabolism in Streptomyces aureofaciens in connection with chlortetracycline production. Rev Fer-ment Ind Aliment 11: 140–146

    Google Scholar 

  • Dimroth P, Walter H, Lynen F (1970) Biosynthese von 6-Methylsalicylsaure. Eur J Bio- chem 13: 98–110

    CAS  Google Scholar 

  • Doerschuk AP, McCormick JRD, Goodman JJ, Szumski SA, Growich JA, Miller PA, Bitler BA, Jensen ER, Matrishin M, Petty MA, Phelps AS (1959) Biosynthesis of tetra-cyclines. I. The halide metabolism of Streptomyces aureofaciens mutants. The preparation and characterization of tetracycline, 7-chloro36-tetracycline and 7-bromotetracycline. J Am Chem Soc 81: 3069–3075

    Article  CAS  Google Scholar 

  • Doskočil J, Sikyta B, Kašparová J, Doskočilova D, Zajíček J (1958) Development of the culture of Streptomyces rimosus in submerged fermentation. J Gen Microbiol 18:302– 314

    PubMed  Google Scholar 

  • Doskočil J, Hošťálek Z, Kašparová J, Zajíček J, Herold M (1959) Development of Streptomyces aureofaciens in submerged culture. J Biochem Microbiol Technol Eng 1:261– 271

    Article  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann NY Acad Sci 51: 177–181

    Article  PubMed  CAS  Google Scholar 

  • Dulaney EL, Putter I, Drescher D, Chaiet L, Miller WJ, Wolf FJ, Hendlin D (1962) Trans- ethylation in antibiotic biosynthesis. I. An ethyl homolog of oxytetracycline. Biochim Biophys Acta 60: 447–449

    Article  CAS  Google Scholar 

  • Erban V, Novotna J, Běhal V, Hošťálek Z (1983) Growth rate, sugar consumption and the expression of anhydrotetracycline oxygenase in Streptomyces aureofaciens. Folia Microbiol (Prague) 28: 262–267

    CAS  Google Scholar 

  • Finlay AC, Hobby GL, P’an SY, Regna PP, Routien JB, Seeley DB, Shull GM, Sobin BA, Solomons I A, Vinson JW, Kane JH (1950) Terramycin, a new antibiotic. Science 111: 85

    Google Scholar 

  • Freese E, Oh KY, Freese EB, Diesterhaft MD, Prasad C (1972) Suppression of sporulation of Bacillus subtilis. In: Halvorson HO, Hanson R, Campbell LL (eds) Spores, vol V. American Society for Microbiology, Washington, pp 212–221

    Google Scholar 

  • Friend EJ, Hopwood DA (1971) The linkage map of Streptomyces rimosus. J Gen Microbiol 68: 187–197

    PubMed  CAS  Google Scholar 

  • Frolova VI, Rosenfeld GS, Listvinova SN (1971) A study on biosynthetic products of Actinomyces rimosus mutants. Isolation and identification of 2-acetyl-2-decarboxamide- oxytetracycline (ADOT) (in Russian). Antibiotiki (Moscow) 16: 687–691

    CAS  Google Scholar 

  • Gatenbeck S (1961) The biosynthesis of oxy tetracycline. Biochem Biophys Res Commun 6: 422–426

    Article  Google Scholar 

  • Goodman JJ, Matrishin M (1961) Effect of sulfadiazine on the synthesis of demethylchlor- tetracycline by Streptomyces aureofaciens. J Bacterid 82: 615

    CAS  Google Scholar 

  • Goodman JJ, Matrishin M (1964) Effect of norleucine on the synthesis of demethylchlor- tetracycline by Streptomyces aureofaciens. Nature 201: 190

    Article  PubMed  CAS  Google Scholar 

  • Goodman JJ, Miller PA (1962) The effect of antimetabolites on the biosynthesis of tetracyclines. Biotechnol Bioeng 4: 391 - 402

    Article  Google Scholar 

  • Goodman JJ, Matrishin M, Backus EJ (1955) The effect of anhydrochlortetracycline on the growth of actinomycetes. J Bacteriol 69: 70–72

    PubMed  CAS  Google Scholar 

  • Goodman JJ, Matrishin M, Young RW, McCormick JRD (1959) Inhibition of the incorporation of chloride into the tetracycline molecule. J Bacteriol 78: 492–499

    PubMed  CAS  Google Scholar 

  • Goodman JJ, Matrishin M, McCormick JRD (1963) Reversal of chlorination inhibitors in Streptomyces aureofaciens. Nature 198: 1093–1094

    Article  PubMed  CAS  Google Scholar 

  • Gourevitch A, Misiek M, Lein J (1955) Competitive inhibition by bromide of incorporation of chloride into the tetracycline molecule. Antibiot Chemother 5: 448–452

    CAS  Google Scholar 

  • Hendlin D, Dulaney EL, Drescher D, Cook T, Chaiet L (1962) Methionine dependence and the biosynthesis of 6-demethylchlortetracycline. Biochim Biophys Acta 58:635– 636

    Article  PubMed  CAS  Google Scholar 

  • Hlavka JJ, Boothe JH (1973) The tetracyclines. Fortschr Arzneimittelforsch 17: 210–240

    CAS  Google Scholar 

  • Hochstein FA, Stephens CR, Conover LH, Regna PP, Pasternack R, Gordon PN, Pilgrim FJ, Brunings KJ, Woodward RB (1953) The structure of Terramycin. J Am Chem Soc 75: 5455–5475

    Article  CAS  Google Scholar 

  • Hochstein FA, Schach von Wittenau M, Tanner FW Jr, Murai K (1960) 2-Acetyl-2-decar- boxamidoöxytetracycline. J Am Chem Soc 82: 5934–5937

    Google Scholar 

  • Hopwood DA (1967) Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31: 373–103

    PubMed  CAS  Google Scholar 

  • Horváth I, Szentirmai A (1962) Glucose catabolism of Streptomyces rimosus. Acta Microbiol Acad Sci Hung9:105–116

    PubMed  Google Scholar 

  • Hošťálek Z (1964 a) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracycline biosynthesis. Folia Microbiol (Prague) 9: 78–88

    Google Scholar 

  • Hošťálek Z (1964 b) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. II. The effect of benzyl thiocyanate on the respiration of washed mycelium of Streptomyces aureofaciens. Folia Microbiol (Prague) 9: 89–95

    Article  Google Scholar 

  • Hošťálek Z (1964 c) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. III. The effect of benzyl thio-cyanate on carbohydrate metabolism of Streptomyces aureofaciens. Folia Microbiol (Prague) 9: 96–102

    Google Scholar 

  • Hošťálek Z (1980) Catabolite regulation of antibiotic biosynthesis. Folia Microbiol (Prague) 25: 445–50

    Article  Google Scholar 

  • Hošťálek Z, Herold M, Nečásek J (1958) Die Beeinflussung der Chlortetracyclinproduk- tion und des Kohlenhydratverbrauches durch Benzylrhodanid. Naturwissenschaften 45: 543–544

    Article  Google Scholar 

  • Hošťálek Z, Tinterova M, Jechova V, Blumauerová M, Suchý J, Vaněk Z (1969 a) Regulation of biosynthesis of secondary metabolites. I. Biosynthesis of chlortetracycline and tricarboxylic acid cycle activity. Biotechnol Bioeng 11: 539–548

    Article  PubMed  Google Scholar 

  • Hošťálek Z, Ryabushko TA, Cudlín J, Vaněk Z (1969 b) Regulation of biosynthesis of secondary metabolites. IV. Inhibition of citrate synthase in Streptomyces aureofaciens by adenosine triphosphate. Folia Microbiol (Prague) 14: 121–127

    Google Scholar 

  • Hošťálek Z, Blumauerová M, Vaněk Z (1974) Genetic problems of the biosynthesis of tetracycline antibiotics. In: Ghose TK, Fiechter A, Blakebrough N (eds) Advances in biochemical engineering, vol 3. Springer, Berlin Heidelberg New York, pp 13–67

    Google Scholar 

  • Hošťálek Z, Blumauerová M, Ludvík J, Jechová V, Běhal V, Časlavská J, Čurdová E ( 1976 a) The role of the genome in secondary biosynthesis in Streptomyces aureofaciens. In: Macdonald KD Second international symposium on the genetics of industrial microorganisms. Academic, London, pp 155–177

    Google Scholar 

  • Hošťálek Z, Tobek I, Bobyk AM, Kulaev IS (1976 b) Role of ATP-glucokinase and polyphosphate glucokinase in Streptomyces aureofaciens. Folia Microbiol (Prague) 21:131– 138

    Article  Google Scholar 

  • Hošťálek Z, Blumauerová M, Vaněk Z (1979) Tetracycline antibiotics. In: Rose AH (ed) Economic microbiology, vol 3. Secondary products of metabolism. Academic, London, pp 293 - 353

    Google Scholar 

  • Hošťálek Z, Jechova V, Čurdová E, Vořísek J (1981) Phosphatase activity in glycocalyx of Streptomyces aureofaciens. In: Schaal KP, Pulverer G (eds) Actinomycetes. Fischer, Stuttgart, pp 281 - 286

    Google Scholar 

  • Hutchinson CR (1981) The biosynthesis of tetracycline and anthracycline antibiotics. In: Corcoran JW (ed) Antibiotics, vol IV, Biosynthesis. Springer, Berlin Heidelberg New York, pp 1 - 11

    Google Scholar 

  • Hütter R (1967) Systematik der Streptomyceten unter besonderer Beriicksichtigung der von ihnen gebildeten Antibiotika. Karger, Basel

    Google Scholar 

  • Janglová Z, Suchý J, Vaněk Z (1969) Regulation of biosynthesis of secondary metabolites. VII. Intracellular adenosine-5’-triphosphate concentration in Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 208 - 210

    Article  Google Scholar 

  • Járai M (1965) Biochemical chlorination inheritance in Streptomyces aureofaciens. Acta Microbiol Acad Sci Hung(Budapest) 11: 409 - 416

    Google Scholar 

  • Járai M, Kollár J (1962) Biochemical studies on Streptomyces aureofaciens. II. Ionic influences on the formation of chlortetracycline. Acta Microbiol Acad Sci Hung 9: 145 - 148

    Google Scholar 

  • Jechová V, Hošťálek Z, Vaněk Z (1969) Regulation of biosynthesis of secondary metabolites. V. Malate dehydrogenase (decarboxylating) in Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 128–134

    Article  Google Scholar 

  • Jeloková J, Zelinková E, Zelinka J (1974) Activity of nucleolytic enzymes in mycelium of Streptomyces aureofaciens during fermentation. Biologia (Bratislava) 29: 207–212

    Google Scholar 

  • Jeloková J, Zelinková E, Mucha J, Zelinka J (1976) Intracellular nucleolytic enzymes in Streptomyces aureofaciens II. In: Zelinka J, Balan J (eds) Proceedings of the second in-ternational symposium on ribosomes and ribonucleic acid metabolism. Slovak Academy of Sciences, Bratislava, pp 147–154

    Google Scholar 

  • Jones GH (1979) Purification of RNA polymerase from actinomycin producing and non-producing cells of Streptomyces antibioticus. Arch Biochem Biophys 198: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Kabuto C, Silverton JV, Akiyama T, Sankawa V, Hutchison RD, Steyn PS, Vleggaar R (1976) X-Ray structure of viridicatumtoxin: a new class of mycotoxin from Penicillium viridicatum Westling. J Chem Soc Chem Commun 728–729

    Google Scholar 

  • Kac LN (1960) Cytological investigation of the development of a chlortetracycline producer on media containing different carbon sources (in Russian). Antibiotiki 5: 29–32

    Google Scholar 

  • Koike J, Tazawa I, Arai T (1967) Genetic relatedness among streptomycetes producing tetracycline antibiotics, studied by means of deoxyribonucleic acid association. Int J Syst Bacteriol 27: 58–60

    Article  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, Chichester

    Google Scholar 

  • Kulaev IS, Bobyk AM, Tobek I, Hošťálek Z (1976) Possible role of high-molecular weight polyphosphates in the biosynthesis of chlortetracycline in Streptomyces aureofaciens (in Russian). Biokhimiya 41: 343–348

    CAS  Google Scholar 

  • Lancini GC, Sensi P (1964) Isolation of 2-acetyl-2-decarboxamidotetracycline from cultures of Streptomyces psammoticus. Experientia 20: 83–84

    Article  PubMed  CAS  Google Scholar 

  • Lein J, Sawmiller LF, Cheney LC (1959) Chlorination inhibitors affecting the biosynthesis of tetracycline. Appl Microbiol 7: 149–151

    PubMed  CAS  Google Scholar 

  • Ludvík J, Mikulík K, Vaněk Z (1971) Fine structure of Streptomyces aureofaciens producing tetracycline. Folia Microbiol (Prague) 16: 479–480

    Article  Google Scholar 

  • Lynen F, Tada M (1961) Die biochemischen Grundlagen der Polyacetat-Regel. Angew Chem 73: 513–519

    Article  CAS  Google Scholar 

  • Madry N, Sprinkmeyer R, Pape H (1979) Regulation of tylosin synthesis in Streptomyces. Effects of glucose analogs and inorganic phosphate. Eur J Appl Microbiol Biotechnol 7: 365–370

    CAS  Google Scholar 

  • Makarevich VG, Laznikova TN (1963) Some data on the comparative study of chlortetra-cycline-producing strains of Actinomyces aureofaciens LSB-2201 and LSB-16 (in Russian). Antibioliki 8: 195–201

    CAS  Google Scholar 

  • Makarevich VG, Slugina MD, Upiter GD, Zaslavskaya PL, Gerasimova TM (1976) Regulation of tetracycline biosynthesis by control of antibiotic-producing organism growth (in Russian). Antibiotiki 21: 205–210

    PubMed  CAS  Google Scholar 

  • Maliková S, Šimúth J, Zelinka J (1972) Activity of DNA-dependent RNA-polymerase in metabolism of Streptomyces aureofaciens. Biologia (Bratislava) 27: 449–453

    Google Scholar 

  • Martin JH, Mitscher LA, Miller PA, Shu P, Bohonos N (1967) 5-Hydroxy-7-chlortetracy- cline. I. Preparation, isolation and physicochemical properties. Antibiot Agents Chemother 1966: 563–567

    Google Scholar 

  • Matelová V, Musílková M, Nečásek J, Šmejkal F (1955) The influence of interrupted aeration on chlortetracycline production (in Czech). Preslia (Prague) 27: 27–34

    Google Scholar 

  • McCormick JRD (1965) Biosynthesis of the tetracyclines. In: Vaněk Z, Hošťálek Z (eds) Biogenesis of antibiotic substances. Publishing House Czechoslovak Academy Science, Prague, pp 73–91

    Google Scholar 

  • McCormick JRD (1966) Biosynthesis of the tetracyclines: an integrated biosynthetic scheme (Part I and II). In: Herold M, Gabriel Z (eds) Antibiotics. Advances in research, production and clinical use. Butterworths, London, pp 556–574

    Google Scholar 

  • McCormick JRD (1967) Tetracyclines. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol II. Biosynthesis. Springer, Berlin Heidelberg New York, pp 113–122

    Google Scholar 

  • McCormick JRD (1969) Point-blocked mutants and the biogenesis of tetracyclines. In: Ser- monti G, Alačević M (eds) Genetics and breeding of Streptomyces. Yugoslavian Academy Science & Arts, Zagreb, pp 163–176

    Google Scholar 

  • McCormick JRD, Jensen ER (1965) Biosynthesis of the tetracyclines. VIII. Characterization of 4-hydroxy-6-methylpretetramid. J Am Chem Soc 87: 1794–1795

    Article  PubMed  CAS  Google Scholar 

  • McCormick JRD, Jensen ER (1968) Biosynthesis of tetracyclines. X. Protetrone. J Am Chem Soc 90: 7126–7127

    Article  PubMed  CAS  Google Scholar 

  • McCormick JRD, Jensen ER (1969) Biosynthetis of the tetracyclines. XII. Anhydrode- methylchlortetracycline from a mutant of Streptomyces aureofaciens. J Am Chem Soc 91: 206

    Article  PubMed  CAS  Google Scholar 

  • McCormick JRD, Sjolander NO, Hirsch U, Jensen ER, Doerschuk AP (1957) A new family of antibiotics: the demethyltetracyclines. J Am Chem Sec 79: 4561–4562

    Article  CAS  Google Scholar 

  • McCormick JRD, Miller PA, Growich JA, Sjolander NO, Doerschuk AP (1958 a) Two new tetracycline-related compounds: 7-chloro-5a-(lla)-dehydrotetracycline and 5a- epi-tetracycline. A new route to tetracycline. J Am Chem Soc 80: 5572

    Google Scholar 

  • McCormick JRD, Sjolander NO, Miller PA, Hirsch U, Arnold NH, Doerschuk AP (1958 b) The biological reduction of 7-chloro-5a(l la)-dehydrotetracycline to 7-chloro- tetracycline by Streptomyces aureofaciens. J Am Chem Soc 80: 6460–6461

    Article  CAS  Google Scholar 

  • McCormick JRD, Hirsch U, Sjolander NO, Doerschuk AP (1960) Cosynthesis of tetracyclines by pairs of Streptomyces aureofaciens mutants. J Am Chem Soc 82: 5006–5007

    Article  CAS  Google Scholar 

  • McCormick JRD, Miller PA, Johnson S, Arnold N, Sjolander NO (1962) Biosynthesis of the tetracyclines. IV. Biological rehydration of the 5a,6-anhydrotetracyclines. J Am Chem Soc 84: 3023–3025

    Article  CAS  Google Scholar 

  • McCormick JRD, Johnson S, Sjolander NO (1963 a) Biosynthesis of the tetracyclines.V. Naphthacenic precursors. J Am Chem Soc 85: 1692–1693

    Article  CAS  Google Scholar 

  • McCormick JRD, Reichenthal J, Johnson S, Sjolander NO (1963 b) Biosynthesis of the tetracyclines. VI. Total synthesis of a naphthacenic precursor: 1,3,10,11,12-pentahy- droxynaphthacene-2-carboxamide. J Am Chem Soc 85: 1694

    Article  CAS  Google Scholar 

  • McCormick JRD, Joachim UH, Jensen ER, Johnson S, Sjolander NO (1965) Biosynthesis of the tetracyclines. VII.4-Hydroxy-6-methylpretetramid, an intermediate accumulated by a blocked mutant of Streptomyces aureofaciens. J Am Chem Soc 87:1793– 1794

    Article  PubMed  CAS  Google Scholar 

  • McCormick JRD, Jensen ER, Johnson S, Sjolander NO (1968 a) Biosynthesis of the tetra-cyclines. IX. 4-Amino dedimethylaminoanhydrodemethylchlortetracycline from a mu-tant of Streptomyces aureofaciens. J Am Chem Soc 90: 2201–2202

    Article  PubMed  CAS  Google Scholar 

  • McCormick JRD, Jensen ER, Arnold NH, Corey HS, Joachim UH, Johnson S, Miller PA, Sjolander NO (1968 b) Biosynthesis of the tetracyclines. XI. The methylanthrone analog of protetrone. J Am Chem Soc 90: 7127–7129

    Google Scholar 

  • Mikulík K, Vaněk Z (1979) Interrelationship between primary and secondary metabolism in actinomycetes. In: Luckner M, Schreiber K (eds) Regulation of secondary product and plant hormone metabolism. Pergamon, Oxford, pp 199–208

    Google Scholar 

  • Mikulík K, Karnetová J, Křemen A, Tax J, Vaněk Z ( 1971 a) Protein synthesis and pro-duction of tetracycline in Streptomyces aureofaciens. In: Ericson A (ed) Radiation and radioisotopes for industrial microorganisms. International atomic energy agency, Vienna, pp 201–222

    Google Scholar 

  • Mikulík K, Blumauerová M, Vaněk Z, Ludvík J (1971 b) Characterization of ribosomes of a strain of Streptomyces aureofaciens producing chlortetracycline. Folia Microbiol (Prague) 16: 24–30

    Article  Google Scholar 

  • Mikulík K, Karnetová J, Quyen N, Blumauerová M, Komersová I, Vaněk Z (1971 c) In-teraction of tetracycline with protein synthesizing system of Streptomyces aureofaciens. J Antibiot 24:801–809

    PubMed  Google Scholar 

  • Miller MW, Hochstein FA (1962) Isolation and characterization of two new tetracycline antibiotics. J Org Chem 27: 2525–2528

    Article  CAS  Google Scholar 

  • Miller PA (1967) Cell-free studies on the biosynthesis of the tetracyclines. Dev Ind Microbiol 8: 96–108

    Google Scholar 

  • Miller PA, Hash JH (1975a) S-Adenosylmethionine-dedimethylamino-4-aminoanhydrotetracycline AT-methyltransferase. In: Hash JH (ed) Methods in enzymology, vol XLIII. Antibiotics. Academic, New York, pp 603–606

    Google Scholar 

  • Miller PA, Hash JH ( 1975 b) NADP-Tetracycline 5a(l la)dehydrogenase. In: Hash JH (ed) Methods in enzymology, vol XLIII. Antibiotics. Academic, New York, pp 606–607

    Google Scholar 

  • Miller PA, McCormick JRD, Doerschuk AP (1956) Studies of chlortetracycline biosynthesis and the preparation of chlortetracycline-C14. Science 123: 1030–1031

    Article  PubMed  CAS  Google Scholar 

  • Miller PA, Sjolander NO, Nalesnyk S, Arnold N, Johnson S, Doerschuk AP, McCormick JRD (1960) Cosynthetic factor I, a factor involved in hydrogen-transfer in Streptomyces aureofaciens. J Am Chem Soc 82: 5002–5003

    Article  CAS  Google Scholar 

  • Miller PA, Saturnelli A, Martin JH, Mitscher LA, Bohonos N (1964) A new family of tetracycline precursors: TV-demethy lanhydr otetracyclines. Biochem Biophys Res Commun 16: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Miller PA, Hash JH, Lincks M, Bohonos N (1965) Biosynthesis of 5-hydroxytetracycline. Biochem Biophys Res Commun 18: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Minieri PP, Firman MC, Mistretta AG, Abbey A, Bricker CE, Rigler NE, Sokol H (1954) A new broad spectrum antibiotic product of the tetracycline group. Antibiot Annu 1953-1954: 81–87

    Google Scholar 

  • Mitscher LA (1968) Biosynthesis of the tetracycline antibiotics. J Pharm Sci 57: 1033–1049

    Article  Google Scholar 

  • Mitscher LA, Martin JH, Miller PA, Shu P, Bohonos N (1966) 5-Hydroxy-7-chlorotetra- cycline. J Am Chem Soc 88: 3647–3648

    Google Scholar 

  • Orlova NV, Pushkina ZT (1972) Oxytetracycline production by Actinomyces rimosus under conditions of addition of nutrients during biosynthesis (in Russian) Antibiotiki 17:108– 114

    Google Scholar 

  • Parajková M, Šimúth J, Zelinka J (1977) Characterization of products of phosphorolysis of Streptomyces aureofaciens ribonucleic acid. Collect Czech Chem Commun 42: 2718–2722

    Google Scholar 

  • Pecák V, Čižek S, Musil J, Čerkes L, Herold M, Bělik E, Hoffman J (1958) Stimulation of chlortetracycline production by benzyl thiocyanate. J Hyg Epidemiol Microbiol Immunol 2: 111–115

    PubMed  Google Scholar 

  • Perlman D, Heuser LJ, Dutcher JD, Barrett JH, Boska J A (1960) Biosynthesis of tetracy-cline by 5-hydroxytetracycline-producing cultures of Streptomyces rimosus. J Bacteriol 80: 419–421

    PubMed  CAS  Google Scholar 

  • Perlman D, Heuser J, Semar JB, Frazier WR, Boska J A (1961) Process for biosynthesis of 7-chloro-6-demethyltetracycline. J Am Chem Soc 83: 4481

    Article  CAS  Google Scholar 

  • Podojil M, Vaněk Z, Běhal V, Blumauerová M (1973) Regulation of biosynthesis of excessive metabolites. XIV. Incorporation of (U-14C) asparagine into the molecule of tetracycline. Folia Microbiol (Prague) 7: 415–417

    Article  Google Scholar 

  • Podojil M, Vaněk Z, Přikrylová V, Blumauerová M (1978) Isolation of ekatetrone, a new metabolite of producing variants of Streptomyces aureofaciens. J Antibiot 31: 850–854

    PubMed  CAS  Google Scholar 

  • Podojil M, Blumauerová M, Vaněk Z, Čulík K (1984) The tetracyclines: properties, biosyn-thesis and fermentation. In: Vandamme EJ (ed) Biotechnology of industrial antibiotics. Dekker, New York, pp 259–279

    Google Scholar 

  • Pridham TG (1977) Physiological characteristics and the species concept in Actinomyce- tales. Dev Ind Microbiol 18: 287–297

    Google Scholar 

  • Přikrylová V, Podojil M, Sedmera P, Vokoun J, Vaněk Z, Hassall CH (1978) The structure of ekatetrone, a metabolite of strains of Streptomyces aureofaciens. J Antibiot 31: 855–862

    PubMed  Google Scholar 

  • Prokofieva-Belgovskaya A A, Orlova NV (1956) Growth and development characteristics of actinomycetes producing streptomycin, chlortetracycline and oxytetracycline during submerged biosynthesis of the antibiotic (in Russian). Izv Akad Nauk SSSR, Ser Biol 5: 59–66

    Google Scholar 

  • Prokofieva-Belgovskaya AA, Popova LA (1959) The influence of phosphorus on the devel-opment of Actinomyces aureofaciens and on its ability to produce chlortetracycline (in Russian). Mikrobiologiya (Moscow) 28: 7–13

    Google Scholar 

  • Prokofieva-Belgovskaya AA, Pestereva GD, Rudaya SM (1956) Growth and development characteristics of Actinomyces rimosus during submerged formation of the antibiotic (in Russian). Mikrobiologiya (Moscow) 25: 666–674

    Google Scholar 

  • Rokos J, Prochazka P (1957) Relation of the metabolism of various carbohydrates to the production of chlortetracycline in Streptomyces aureofaciens (in Czech). Cesk Mikrobiol (Prague) 2: 251–253

    Article  CAS  Google Scholar 

  • Scotti T, Zocchi P (1955) Studio della struttura del micelio di Streptomyces aureofaciens in coltura sommersa. G Microbiol 1: 35–43

    Google Scholar 

  • Sekizawa Y (1955) A biochemical chlorination in Streptomyces. J Biochem (Tokyo) 42: 217–219

    Google Scholar 

  • Sensi P, DeFerrari GA, Gallo GG, Rolland G (1955) Bromotetracycline, a new antibiotic. I. Isolation and physical and chemical characteristics. Farmaco [Sci] 10: 337–345

    CAS  Google Scholar 

  • Shen S-C, Chen J-P, Koo T-A (1959) Pentose metabolism and the influence of orthophos- phate on the paths of sugar degradation of Streptomyces aureofaciens. Sci Sin 8:733– 745

    PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1968) Cooperative description of type cultures of Streptomyces. III. Additional species descriptions from first and second studies. Int J Syst Bacteriol 18: 279–392

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1969) Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol 19: 391–512

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1972) Cooperative description of type strains of Streptomyces. V. Additional descriptions. Int J Syst Bacteriol 22: 265–394

    Article  Google Scholar 

  • Silverman RH, Atherly AG (1978) Unusual effect of 5a,6-anhydrotetracycline and other tetracyclines. Inhibition of guanosine 5’-diphosphate 3’-diphosphate metabolism, RNA accumulation and other growth-related processes in Escherichia coli. Biochim Biophys Acta 518: 267–276

    PubMed  CAS  Google Scholar 

  • Šimúth J, Zelinka J (1970) Nucleic acid degradation products of Streptomyces aureofaciens. J Antibiot 23: 242–249

    PubMed  Google Scholar 

  • Šimúth J, Zelinka J (1971) The activity of polynucleotide phosphorylase in Streptomyces aureofaciens (in Slovak). Biologia (Bratislava) 26: 239–243

    Google Scholar 

  • Šimúth J, Zelinka J, Polek B (1975) Polynucleotide phosphorylase from Streptomyces aureofaciens: purification and properties. Biochim Biophys Acta 379: 397–407

    PubMed  Google Scholar 

  • Šimúth J, Hudec J, Chau HT, Dányi O, Zelinka J (1979 a) The synthesis of highly phos- phorylated nucleotides, RNA and protein by Streptomyces aureofaciens. J Antibiot 32: 53–58

    PubMed  Google Scholar 

  • Šimúth J, Trnovský J, Dányi O, Zelinka J (1979 b) A cell free proteosynthetic system of Streptomyces aureofaciens. I. Translation of poly(U) prepared in situ by polynucleotide phosphorylase from Streptomyces aureofaciens in the presence of inhibitors. Biologia (Bratislava) 34: 963–970

    Google Scholar 

  • Snell JF, Wagner RL, Hochstein FA (1956) Radioactive oxytetracycline (Terramycin). I. Mode of synthesis and properties of the radioactive compound. In: Proceedings of the international conference on peaceful uses of atomic energy, vol 12, Radioactive isotopes and ionizing radiation in agriculture, physiology and biochemistry. Unites Nations, Geneva, pp 431–434

    Google Scholar 

  • Snell JF, Birch AJ, Thomson PL (1960) The biosynthesis of tetracycline antibiotics. J Am Chem Soc 82: 2402

    Article  CAS  Google Scholar 

  • Štastná J, Mikulík K (1981) Role of highly phosphorylated nucleotides and antibiotics in the development of streptomycetes. In: Schaal KP, Pulverer G (eds) Actinomycetes. Fischer, Stuttgart, pp 481–486

    Google Scholar 

  • Stephens CR, Conover LH, Pasternack R, Hochstein FA, Moreland WT, Regna PP, Pilgrim FJ, Brunings KJ, Woodward RB (1954) The structure of aureomycin. J Am Chem Soc 76: 3568–3575

    Article  CAS  Google Scholar 

  • Timko J, Zelinková E, Halás Š, Zelinka J (1976 a) A ribonuclease in the cell debris of Strep- tomyces aureofaciens. Biologia (Bratislava) 31: 665–673

    Google Scholar 

  • Timko J, Sabo B, Zelinka J (1976 b) Nucleic acids and ribosomes from mycelium of Strep- tomyces aureofaciens during fermentation. Biologia (Bratislava) 31: 703–708

    Google Scholar 

  • Turley RH, Snell JF (1966) Biosynthesis of tetracycline antibiotics. In: Snell JF (ed) Biosynthesis of antibiotics, vol 1. Academic, New York, pp 94–120

    Google Scholar 

  • Vaněk Z (1958) Stimulatory substances for the synthesis of chlortetracycline by Strepto- myces aureofaciens. Folia Biol (Prague) 4: 100–106

    Google Scholar 

  • Vaněk Z, Cudlín J, Mikulík K (1969) Biogenesis and genetical regulations of synthesis of secondary metabolites. In: Sermonti G, Alačević M (eds) Genetics and breeding of Streptomyces. Yugoslavian Academy Science & Arts, Zagreb, pp 180–186

    Google Scholar 

  • Vaněk Z, Cudlín J, Blumauerová M, Hošťálek Z (1971) How many genes are required for the synthesis of chlortetracycline. Folia Microbiol (Prague) 16: 225–240

    Article  Google Scholar 

  • Vaněk Z, Tax J, Komersova I, Sedmera P, Vokoun J (1977) Anthracyclines. Folia Microbiol (Prague) 22: 139–159

    Article  Google Scholar 

  • Villax I (1962) Streptomyces lusitanus and the problem of classification of the various te- tracycline-producing Streptomyces. Antimicrob Agents Chemother 661–668

    Google Scholar 

  • Voříšek J, Powell AJ, Vaněk Z (1969) Regulation of biosynthesis of secondary metabolites. IV. Purification and properties of phosphoenolpyruvate carboxylase in Streptomyces aureofaciens. Folia Microbiol (Prague) 14: 398–405

    Article  Google Scholar 

  • Voříšek J, Powell AJ, Vaněk Z (1970) Regulation of biosynthesis of secondary metabolites. XIII. Specific allosteric properties of phosphoenolpyruvate carboxylase in Streptomyces aureofaciens. Folia Microbiol (Prague) 15: 153–159

    Article  Google Scholar 

  • Weindling R, Tresner HD, Backus EJ (1961) The host-range of a Streptomyces aureofaciens actinophage. Nature 189: 603

    Article  PubMed  CAS  Google Scholar 

  • Weiser J, Mikulík K, Bosch L (1981) Studies on the elongation factor Tu from Streptomyces aureofaciens producing tetracycline. Biochem Biophys Res Commun 99: 16–22

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva ZM, Mindlin SZ (1965) Properties of Actinomyces aureofaciens mutants producing 6-demethylchlortetracycline (in Russian). Mikrobiologiya (Moscow) 34: 91–100

    CAS  Google Scholar 

  • Zelinka J (1968) Regulatory aspects of chlortetracycline fermentation. Biologia (Bratislava) 23: 169–174

    CAS  Google Scholar 

  • Zelinka J, Sabo B (1969) The effect of chlortetracycline on ribosome properties of the strain Streptomyces aureofaciens (in Slovak). Biologia (Bratislava) 24: 462–467

    CAS  Google Scholar 

  • Zelinka J, Schnittová D (1966) Nucleic acids level in the mycelium of Streptomyces aureofaciens during fermentation (in Slovak). Biologia (Bratislava) 21: 536–539

    CAS  Google Scholar 

  • Zelinka J, Sedláček J (1968) Effect of cadaverine on the level of ribonucleic acids in Streptomyces aureofaciens. Biologia (Bratislava) 23: 913–916

    CAS  Google Scholar 

  • Zelinková E, Zelinka J (1969) Biosynthesis of the exocellular ribonuclease and non-specific phosphodiesterase by Streptomyces aureofaciens (in Slovak). Biologia (Bratislava) 24: 456–461

    Google Scholar 

  • Zelinková E, Bačová M, Zelinka J (1971) Exocellular ribonuclease from Streptomyces aureofaciens. II. Properties and specificity. Biochim Biophys Acta 235: 343–352

    PubMed  Google Scholar 

  • Zygmunt WA (1962) Selective inhibition in Streptomyces rimosus. J Bacteriol 84: 1126–1127

    PubMed  CAS  Google Scholar 

  • de Jesus AE, Hull WE, Steyn PS, van Heerden FR, Vleggaar R (1982) Biosynthesis of viridicatumtoxin, a mycotoxin from Penicillium expansum. J Chem Soc Chem Commun 902–904

    Google Scholar 

  • Rhodes PM, Winskill N, Friend EJ, Warren M (1981) Biochemical and genetic characterization of Streptomyces rimosus mutants impaired in oxytetracycline biosynthesis. J Gen Microbiol 124: 329–338

    CAS  Google Scholar 

  • Thomas R, Williams DJ (1983 a) Oxytetracycline biosynthesis: mode of incorporation of [1-13C]- and [l,2-13C2]-acetate. J Chem Soc Chem Commun 128–130

    Google Scholar 

  • Thomas R, Williams DJ (1983 b) Oxytetracycline biosynthesis: origin of the carboxamide substituent. J Chem Soc Chem Commun 677–679

    Google Scholar 

  • Thomas R, Williams DJ (1984) Oxytetracycline biosynthesis: mode of incorporation of [1- 13C,2H3] acetate. J Chem Soc Chem Commun 443–44

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hošťálek, Z., Vaněk, Z. (1985). Biosynthesis of the Tetracyclines. In: Hlavka, J.J., Boothe, J.H. (eds) The Tetracyclines. Handbook of Experimental Pharmacology, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70304-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70304-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70306-5

  • Online ISBN: 978-3-642-70304-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics