Skip to main content

Morphofunctional Aspects of the Normal and Pathological Blood-Brain Barrier

  • Conference paper
Cerebrovascular Transport Mechanisms

Part of the book series: Acta Neuropathologica Supplementum ((NEUROPATHOLOGIC,volume 8))

Abstract

Compared with other organs of the body the brain and spinal cord show unique behaviour as far as the exchange of metabolites to and from the blood is concerned. This peculiarity has led to the concept of the so-called “blood-brain barrier” (BBB). The concept is useful not only when dealing with questions of metabolic exchange in general but more specifically for understanding the mechanism of the production of and the changes in the cerebral spinal fluid; the permeability of the brain for toxins, viruses and antibodies; and, finally, the capability of various drugs to reach the brain. The pathologist is often confronted with blood-brain barrier function since blood pigments appear in the cerebrospinal fluid in certain diseases. For example, in neonatal jaundice the yellow pigment reaches the orain because of an insufficiently developed blood-brain barrier; the phenomenon cannot be found in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference list

  1. Casley-Smith JR (1969) An electron microscopical demonstration of the permeability of cerebral and retinal capillaries to ions. Experientia (Basel) 25:845–847

    Article  CAS  Google Scholar 

  2. Cunha-Vaz JG, Shakib M and Ashton N (1966) Studies on the permeability of the blood-retinal barrier.I. On the existence, development and site of a blood-retinal barrier.Brit. J. Ophthal. 5O:441–453

    Article  Google Scholar 

  3. Shakib M and Cunha-Vaz JG (1966) Studies on the permeability of the blood-retinal barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood retinal barrier. Exp. Eye Res. 5:229–234

    Article  PubMed  CAS  Google Scholar 

  4. Milhorat TH, Davis DA and Lloyd BJ (1973) Two morphologically distinct blood-brain barriers preventing entry of cytochrome c into cerebrospinal fluid. Science 180:76–77

    Article  CAS  Google Scholar 

  5. Ramsey HJ (1965) Fine structure of the surface of the cerebral cortex of human brain. J. of Cell Biol. 26:323–333

    Article  CAS  Google Scholar 

  6. Ehrlich P (1885) Das Sauerstoff-Bedürfnis des Organismus.Eine farbenanalytische Studie. Hirschwald, Berlin

    Google Scholar 

  7. Goldmann E (1913) Vitalfärbung am Zentralnervensystem. Beitrag zur Physiopathologie des Plexus chorioideus und der Hirnhäute. Abh. preuß. Akad. Wiss. Physik.-math. Kl.Nr.1

    Google Scholar 

  8. Spatz H (1934) Die Bedeutung der vitalen Färbung für die Lehre vom Stoffaustausch zwischen dem ZNS und dem übrigen Körper. Das morphologische Substrat der Stoffwechselschranken im Zentralorgan. Arch. Psychiatr. 101:267–358

    Article  Google Scholar 

  9. Cervós-Navarro J and Iglesias-Rozas JR (1978) Arteriole as a site of metabilic exchange.-In: Advances in Neurology, Vol.20. Cervós-Navarro J, Betz E, Ebhardt G, Ferszt R and Wüllenweber R (eds). Raven Press, New York. pp17–24

    Google Scholar 

  10. Cervós-Navarro J (1981) The ultrastructural manifestation of Microcirculatory disturbances.-In: Cerebrovascular Dis-eases: New Trends in Surgical and Medical Aspects. Barnett H, Paolette P, Flamm E and Brambilla G (eds). Elsevier/North-Holland Biomedical Press, pp 19–32

    Google Scholar 

  11. Van Breemen VL and Clemente CD (1955) Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope. J. Biophys.Biochem. Cytol.1:161–166

    Article  Google Scholar 

  12. Dempsey EW and Wislocki GB (1955) An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J. Biophys. Biochem. Cytol. 1:245–256

    Article  PubMed  CAS  Google Scholar 

  13. Farquhar MG, Wissig SL and Palade GE (1961) Glomerular permeability 1. Ferritin transfer across the normal glomerular capillary wall. J. exp. Med. 113:47–66

    Article  PubMed  CAS  Google Scholar 

  14. Maynard EA, Schultz RL and Pease DC (1957) Electron microscopy of the vascular bed of rat cerebral cortex. Amer. J. Anat. 100:409–433

    Article  PubMed  CAS  Google Scholar 

  15. Cervós-Navarro J (1964) Die Bedeutung der Elektronenmikro-skopie für die Lehre vom Stoffaustausch zwischen dem ZNS und dem übrigen Körper. Dtsch. Z.f.Nervenheilk.186:209–237

    Google Scholar 

  16. Cervós-Navarro J and Ferszt R (1973) Connective Tissue in Pericapillary spaces of the human spinal cord. Acta Neuropath. (Berl.) 24:178–183

    Article  Google Scholar 

  17. Ferszt R, Cervós-Navarro J and Sasaki S (1974) Pericapil-lary spaces in the human spinal cord.-In: Pathology of Cerebral Microcirculation. Cervós-Navarro J (ed). De Gruyter, Berlin-New York, pp 59–66

    Google Scholar 

  18. Gerschenfeld HM, Wald F, Zadunaisky JA and De Robertis EDP(1959) Function of astroglia in the water-ion metabolism of the central nervous system. Neurology 9:412–425

    PubMed  CAS  Google Scholar 

  19. De Robertis EDP and Gerschenfeld HM (1961) Submicroscopic morphology and function of glial cells. Int. Rev. Neurobiol. 3:1–65

    Article  Google Scholar 

  20. Cervós-Navarro J (1963) Elektronenmikroskopische Befunde an den Capillaren der Hirnrinde. Arch. Psychiat. Nervenkr. 204:484–504

    Google Scholar 

  21. Wolff J (1963) Beiträge zur Ultrastruktur der Kapillaren inder normalen Großhirnrinde. Z. Zellforsch. 60:409–431

    Article  PubMed  CAS  Google Scholar 

  22. Braak E (1975) On the fine structure of the external glial layer in the isocortex of man. Cell Tissue Res. 157:367–390

    Article  PubMed  CAS  Google Scholar 

  23. Bennet HS, Luft JH and Hampton JC (1959) Morphological clas-sification of vertebrate blood capillaries. Amer. J. Physiol. 196:381–399

    Google Scholar 

  24. Majno G (1965) Ultrastructure of the vascular membrane.-In:Handbook of Physiology. Section 2. Circulation, Vol. III.Hamilton WF (ed) American Physiological Society, Washington, D.C., pp. 2293–2375

    Google Scholar 

  25. Lee JC (1971) Evolution in the concept of the blood-brain barrier phenomenon.-In: Progress in Neuropathology, Vol.I. Zimmermann HM (ed) Grune and Stratton, New York, pp 84–145

    Google Scholar 

  26. Reese TS and Karnovsky MJ (1967) Fine structural localiza-tion of a blood-brain barrier to exogenous peroxidase.J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  27. Brightman MW, Reese TS and Feder N (1970) Assessment with the electron microscope of the permeability to peroxidase of cerebral endothelium in mice and sharks.-In:“Capillary Permeability”.Cron C and Lassen NA (eds), Academic Press, New York, pp. 463–476

    Google Scholar 

  28. Feder N (1971) Microperoxidase. An ultrastructural tracer of low molecular weight. J Cell Biol 51:339–343

    Article  PubMed  CAS  Google Scholar 

  29. Brightman MW, Klatzo I, Olsson Y and Reese TS (1970) The blood-brain barrier to proteins under normal and pathological conditions. J Neurol Sci 10:215–239

    Article  PubMed  CAS  Google Scholar 

  30. Westergaard E (1974) Transport of protein across cerebral arteries under normal and experimental conditions. In: Pathology of Cerebral Microcirculation. Cervós-Navarro J(ed). De Gruyter, Berlin, pp. 218–227

    Google Scholar 

  31. Simionescu N, Simionescu M and Palade GE (1976) Recent studies in vascular endothelium.-In: Atherogenesis. Vol.275:64–75. The New York Academy of Sciences, New York, pp64–75

    Google Scholar 

  32. Shea SM, Karnovsky MJ and Bossert WH (1969) Vesicular transport across endothelium: Simulation of a diffusion model.J. Theor. Biol. 24:30–42

    Article  PubMed  CAS  Google Scholar 

  33. Green HS and Casley-Smith JR (1972) Calculations on the passage of small vesicles across endothelial cells byBrownian motion. J. Theor. Biol. 35:103–111

    Article  PubMed  Google Scholar 

  34. Shivers RR (1979) The blood-brain barrier of a reptile, Ano-lis Carolinensis. A freeze-fracture study. Brain Research169:221–230

    Article  PubMed  CAS  Google Scholar 

  35. Povlishock JT, Kontos HA, DeWitt DS and Wei EP (1981) Effects of mechanical brain injury and acute hypertension upon the cerebral vasculature: Morphophysiological consideration of those factors involved in the genesis of cerebrovascular dysfunction.-In: Cerebral Microcirculation and Metabolism. Cervós-Navarro J and Fritschka E (eds) Raven Press, New York, pp 67–75

    Google Scholar 

  36. Oldendorf WH, Cornford ME and Brown WJ (1981) Some uniqueultrastructural characteristic of rat brain capillaries. In: Cerebral Microcirculation and Metabolism. Cervós-Navarro J and Fritschka E (eds) Raven Press, New York,pp 9–15

    Google Scholar 

  37. Matsuda H and Sugiura S (1970) Ultrastructure of “tubularbody” in the endothelial cells of the ocular blood vessels. Invest. Ophthal. 9:919–925

    PubMed  CAS  Google Scholar 

  38. Stehbens WE (1965) Ultrastructure of vascular endothelium in the frog. Quart. J. Exp. Physiol. 50:375–384

    PubMed  CAS  Google Scholar 

  39. Stehbens WE (1972) Pathology of cerebral blood vessels. C.V.Mosby, St. Louis

    Google Scholar 

  40. Weibel ER and Palade GE (1964) New cytoplasmic components inarterial endothelia. J. Cell Biol. 23:101–112

    Article  PubMed  CAS  Google Scholar 

  41. Drommer W (1972) Feinstructur der normalen Arteriolen undihre Alterationen nach experimentellen Colitoxinshock imzentralen Nervensystem des Schweines. Acta Neuropath.(Berlin) 22:29–41

    Article  CAS  Google Scholar 

  42. Imai H and Thomas WA (1968) Cerebral atherosclerosis in swine: Role of necrosis in progression of diet-induced lesions from proliferative to atheromatous stage. Exp. Molec.Path.8:330–358

    Article  PubMed  CAS  Google Scholar 

  43. Brightman MW and Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:647–677

    Article  Google Scholar 

  44. Karnovsky MJ (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol. 35:213–236

    Article  PubMed  CAS  Google Scholar 

  45. Frömter E and Diamond J (1972) Route of passive ion permeation in epithelia. Nature (new Biol.) 235:9–13

    Article  Google Scholar 

  46. Machen TE, Erlij D and Wooding FBP (1972) Permeable junctional complexes. The movement of lanthanum across rabbitgallblader and intestine. J. Cell Biol. 54:302–312

    Article  PubMed  CAS  Google Scholar 

  47. Bouldin WT and Krigman MR (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Research 99:444–448

    Article  PubMed  CAS  Google Scholar 

  48. Simionescu M, Simionescu N and Palade GE (1975) Segmental differentiations of cell junctions in the vascular endothelium. J. Cell Biol. 67:863–885

    Article  PubMed  CAS  Google Scholar 

  49. Spatz M and Mrsulja BB (1982) Progress in cerebral microvascular studies related to the function of the blood-brain barrier. Adv.Cell.Neurobiology 3:311–337

    CAS  Google Scholar 

  50. Weil-Malherbe H, Whitby LG and Axelrod J (1961) The blood-brain barrier for catecholamines in different regions of the brain. In: Regional Neurochemistry, Kety SS and Eldes J (eds), Pergamon, Oxford, pp 284–292

    Google Scholar 

  51. Oldendorf WH (1971) Brain uptake of radio-labelled amino acids, amines and hexose after arterial injection. Am. J.Physiol. 221:1629–1639

    PubMed  CAS  Google Scholar 

  52. Bertler A, Falck B, Owman Ch and Rosgengres E (1966) The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol.Rev. 18:369–385

    PubMed  CAS  Google Scholar 

  53. Björklund A, Falck B, Hromek F and Owman Ch (1969) An enzymic barrier mechanism for monoamine precursors in the newly-formed brain capillaries following electrolytic or mechanical lesions. J. Neurochem. 16:1605–1608

    Article  PubMed  Google Scholar 

  54. Hardebo JE, Edvinsson L, Falck B, Lindvall M, Owman Ch, Rosengren E and Svengaard NA (1976) Experimental models for histochemical studies of the enzymatic blood-brain barrier for amine precursors. In: The Cerebral Vessel Wall, Cervós-Navarro J and Matakas F (eds), Raven Press New York, pp 233–277

    Google Scholar 

  55. Skolnik P and Daly JW (1975) Functional compartments of adenine nucleotides serving as precursors of adenosine 3′,5′-monophosphate in mouse cerebral cortex. J. Neurochem. 24:451–456

    Article  Google Scholar 

  56. Mrsulja BB and Djuricic BM (1980) Biochemical characteristics of cerebral capillaries. In: The Cerebral Micro-vasculature, Eisenberg HM and Suddith RL (eds), Academic Press, New York, pp 29–42

    Google Scholar 

  57. Hardebo JE, Emson PC, Falck B, Owman Ch and Rosengres E (1980) Enzymes related to monoamine transmitter metabolism in brain microvessels. J. Neurochem. 35:1388–1393

    Article  PubMed  CAS  Google Scholar 

  58. Van Gelder NM (1968) A possible enzyme barrier for gamma-aminobutyric acid in the central nervous system. Prog. Brain Res. 29:259–271

    Article  PubMed  Google Scholar 

  59. Barrett RE, Fraser RAR and Stein BM (1971) A fluorescence histochemical survey of monoaminergic innervation of cerebral blood vessels in primate and humans. Trans. Amer. Neurol. Assoc. 96:39–45

    CAS  Google Scholar 

  60. Robert AM, Godean G, Miskulin M and Maati F (1977) Mechanism of action of collagenase on the permeability of the blood-brain barrier. Neurochem. Res. 2:449–455

    Article  CAS  Google Scholar 

  61. Koelle GB (1954) The histochemical localization of cholinesterase in the central nervous system of the rat. J. Comp. Neurol. 100:211–235

    Article  PubMed  CAS  Google Scholar 

  62. Joó F and Csillik B (1966) Topographic correlation between the hematoencephalografic barrier and the cholinesterase activity of brain capillaries. Exp-Brain Res. 1:147–151

    PubMed  Google Scholar 

  63. Flumerfelt BA, Lewis PR and Gwyn DG (197 3) Cholinesterase activity of capillaries in the rat brain. A light and electron microscopic study. Histochem. J. 5:67–77

    Article  PubMed  CAS  Google Scholar 

  64. Karcsú S, Jancsó G and Tóth L (1977) Butyrylcholinesterase activity in fenestrated capillaries of the rat area postrema. Brain Res. 120:146–150

    Article  PubMed  Google Scholar 

  65. Joó F, Varkonyi T and Csillik B (1967) Developmental alterations in the brain capillaries: A histochemical contribution to the problem of the blood-brain barrier. Histochemie 9:140–148

    Article  PubMed  Google Scholar 

  66. Kreutzberg GW, Kaiya H and Toth L (1979) Distribution and origin of acetylcholinesterase activity in the capillaries of the brain. Histochemistry 61:111–122

    Article  PubMed  CAS  Google Scholar 

  67. Joó F (1979) The role of adenosine triphosphatase in the maintenance of molecular organization of the basal lamina in the brain capillaries. Front. Matrix Biol. 7:166–182

    Google Scholar 

  68. Mrsulja BJ and Mrsulja BB (1980) Histochemical and biochemical investigations on ATPase activity following transient brain ischemia in gerbils. In: Circulatory and Developmental Aspects o Brain Metabolism. Spatz M,Mrsulja BB, Rakic LJ and Lust WD (eds), Planeum, New York, pp 65–79

    Google Scholar 

  69. Torack RM and Barrnett RJ (1964) The fine structural localization of nucleoside phosphatase in the blood-brain barrier. J. Neuropath. exp. Neurol. 23:46–59

    Article  PubMed  CAS  Google Scholar 

  70. Mrsulja BJ and Mrsulja BB (in press) Na+K+ -ATPase and postischemic brain edema: Ultrastructural features of vascular-perivascular region in the gerbil

    Google Scholar 

  71. Rapoport SI, Mathews K and Thompson HK (1976) Absence of brain edema after reversible osmotic opening of the blood-brain barrier.-In: Dynamics of Brain Edema, Pappius HM and Feindel W (eds) Springer, New York, pp 18–22

    Google Scholar 

  72. Rechardt L (1969) Electron microscopic and histochemical observations on the supraoptic nucleus of normal and dehydrated rats. Acta Physiol. Scand. suppl. 329:40–50

    Google Scholar 

  73. Panula P and Rechardt L (1978) Age dependent increase in the non-specific cholinesterase activity of the capillaries in the rat neostriatum. Histochemistry 55:49–54

    Article  PubMed  CAS  Google Scholar 

  74. Vorbrodt AW, Lossinsky AS, Wisniewski HM, Moretz RC and Iwanowski I (1981) Ultrastructural cytochemical studies of cerebral microvasculature in scrapie infected mice. Acta Neuropath. (Berl) 53:203–211

    Article  CAS  Google Scholar 

  75. Cervós-Navarro J (1967) Brain edema due to ionizing radiation. -In: Brain Edema. Klatzo I and Seitelberger F (eds) Springer, Wien-New-York, pp 632–637

    Google Scholar 

  76. Lierse W and Franke H (1966) Zelluläre Fehlleistungen im Zentralnervensystem des Meerschweinchens nach Einwirkung verschiedenartiger ionisierender Strahlen. Verh. Anat. Ges. 61:369–373

    PubMed  CAS  Google Scholar 

  77. Beggs JL and Waggener J (1976) Transendothelial vesicular transport of protein following compression injury in the spinal cord. Lab. Invest. 34:428–439

    PubMed  CAS  Google Scholar 

  78. Hansson HA, Johansson BB and Blomstrand C (1975) Ultrastructural studies on cerebrovascular permeability in acute hypertension. Acta neuropath. (Berl.) 32:187–198

    Article  CAS  Google Scholar 

  79. Westergaard E, V. Deurs B and Brøndsted HE (1977) Increased vesicular transfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta neuropath. (Berl.) 37:141–152

    Article  CAS  Google Scholar 

  80. Nagy Z, Mathieson G and Hüttner I (1979) Opening of tight junctions in cerebral endothelium. II. Effect of pressure-pulse induced acute arterial hypertension. J. Comp. Neur. 185:579–586

    Article  PubMed  CAS  Google Scholar 

  81. Petito CK, Schaefer JA and Plum F (1977) Ultrastructural characteristic of the brain and blood-brain barrier in experimental seizures. Brain Res. 127:251–267

    Article  PubMed  CAS  Google Scholar 

  82. Westergaard E, Hertz MM and Bolwig TG (1978) Increased permeability to horseradish peroxidase across cerebral vessels, evoked by electrically induced seizures in the rat. Acta Neuropath. (Berl.) 41:73–80

    Article  CAS  Google Scholar 

  83. Laursen H and Westergaard E (1977) Enhanced permeability to horseradish peroxidase across cerebral vessels in the rat after portocaval anastomosis. Neuropathology and Applied Neurobiology 3:29–43

    Article  Google Scholar 

  84. Manz HJ and Robertson DM (1972) Vascular permeability to horseradish peroxidase in brainstem lesions of thiamine-deficient rats. Am. J. Pathol. 66:565–576

    PubMed  CAS  Google Scholar 

  85. Ware RA, Chang LW and Burkholder PM (1974) An ultrastructural study on the blood-brain barrier dysfunction following mercury intoxication. Acta Neuropath. (Berl.) 30: 211–224

    Article  CAS  Google Scholar 

  86. Persson LI, Johansson BB and Hansson HA (1978) Ultrastruc-tural studies on blood-brain barrier dysfunction after cerebral air embolism in the rat. Acta Neuropathol. (Berlin) 44:53–56

    Article  CAS  Google Scholar 

  87. Baker RN, Cacilla PA, Pollock PS and Frommes SP (1971) The movement of exogenous protein in experimental cerebral edema. J. Neuropath. Exp. Neurol. 30:668–679

    Article  PubMed  CAS  Google Scholar 

  88. Sasaki S, Ferszt R and Cervós-Navarro J (1977) Transendo-thelial vesicular transport of protein in brain edema induced by ultraviolet irradiation. Acta neuropath. (Berl.) 40:207–212

    Article  CAS  Google Scholar 

  89. Cervós-Navarro J, Christmann U, Sasaki S (1976) An ultra-structural substrate for the resolution of postirradadiation brain edema.-In: Dynamics of the Brain Edema. Pappius HM and Feindel W (eds) Springer, Berlin, pp 43–49

    Google Scholar 

  90. Ferszt R, Neu S, Cervós-Navarro J and Sperner J (1978) The spreading fo focal brain edema induced by ultraviolet irradiation. Acta neuropath. 42:223–229

    Article  PubMed  CAS  Google Scholar 

  91. Ferszt F, Neu S, Cervós-Navarro J and Brock M (1978) Vesicular transport through endothelial cells in focal brain edema.-In: Advances in Neurology Vol. 20. Cervós-Navarro J, Betz E, Ebhardt G, Ferszt R and Wüllenweber R (eds) Raven Press, New York, pp 293–301

    Google Scholar 

  92. Wagner HJ, Pilgrim Ch and Brandt J (1974) Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid. Acta neuropath. (Berl.) 27:299–305

    Article  CAS  Google Scholar 

  93. Van Deurs B (1977) Vesicular transport of horseradish peroxidase from brain to Blood in segments of the cerebral microvasculature in adult mice. Brain Res. 124:1–8

    Article  PubMed  CAS  Google Scholar 

  94. Houthoff HJ, Go KG and Huitema S (!981) The permeability of cerebral capillary endothelium in cold injury: Comparison of an endogenous and exogenous protein tracer.-In: Cerebral Microcirculation and Metabolism. Cervós-Navarro J and Fritschka E (eds) Raven Press, New York, pp 331–336

    Google Scholar 

  95. Shivers RR (1978) The effect of hyperglicimia on brain capillary permeability in a lizard, Anolis corolinensis. In: Proceedings VIIth neuroscience meeting 4, 335

    Google Scholar 

  96. Nag S, Robertson DM and Dinsdale HB (1977) Cerebral cortical changes in a acute experimental hypertension. An ultrastructural study. Lab Invest 36:150–161

    PubMed  CAS  Google Scholar 

  97. Hirano A, Becker NH and Zimmermann HM (1969) Pathological alterations in the cerebral endothelial cell barrier to peroxidase. Arch Neurol 20:300–308

    PubMed  CAS  Google Scholar 

  98. Nishimoto K, Wolman M, Spatz M and Klatzo I (1978) Pathophysiologic correlations in the blood-brain barrier damage due to air embolism.-In: Advances in Neurology, Vol. 20. Cervós-Navarro J, Betz E, Ebhardt G, Ferszt R and Wüllenweber R (eds) Raven Press, New York, pp 237–244

    Google Scholar 

  99. Brightman MW (1977) Morphology of blood-brain interfaces. Exp. Eye Res. (Suppl.) 1–25

    Google Scholar 

  100. Simionescu N, Simionescu M and Palade GE (1975) Permeability of muscle capillaries to small heme-peptides. J. Cell Biol 64:586–607

    Article  PubMed  CAS  Google Scholar 

  101. Simionescu N, Simionescu M and Palade GE (1978) Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II Pathways by micro-peroxidase across the endothelium. Microvas Res 15:17–36

    Article  CAS  Google Scholar 

  102. Westergaard E, Brightman MW (1973) Transport of proteins across normal cerebral arterioles. J Comp Neurol 152: 17–44

    Article  PubMed  CAS  Google Scholar 

  103. Van Deurs B (1976) Choroid plexus absorption of horseradish peroxidase from the cerebral ventricles. J Ultrastruct Res 55:400–416

    Article  PubMed  Google Scholar 

  104. Olsson Y, Klatzo I and Carsten A (1975) The effect of acute radiation injury on the permeability and ultrastructure of intracerebral capillaries. Neuropathol. Appl. Neurobiol. 1:59–68

    Article  Google Scholar 

  105. Hicks JT, Albrecht P and Rapoport SI (1976) Entry of neutralizing antibody to measles into brain and cerebrospinal fluid of immunized monkeys fter osmotic opening of the blood-brain barrier. Exp. Neurol. 53:768–779

    Article  PubMed  CAS  Google Scholar 

  106. Rapoport SI (1976) Opening of the blood-brain barrier by acute hypertension. Exp Neurol 52:467–479

    Article  PubMed  CAS  Google Scholar 

  107. Rapoport SI (1976) “Blood-Brain Barrier in Physiology and Medicine”.Raven Press, New York

    Google Scholar 

  108. Giacomelli F, Wiener J and Spiro D (1970) The cellular pathology of experimental hypertension. V. Increased permeability of cerebral arterial vessels. Am J Pathol 59: 133–160

    PubMed  CAS  Google Scholar 

  109. Rapoport SI, Hori M and Klatzo I (1972) Testing a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223:323–331

    PubMed  CAS  Google Scholar 

  110. Rapoport SI (1973) Reversible opening of the blood-brain barrier by osmotic shrinkage of the cerebrovascular endothelium: Opening of the tight junctions as related to carotid arteriography. In: Small Vessel Angiography. Hilal SH (ed), Mosby, St. Louis, pp 137–151

    Google Scholar 

  111. Brightman MW, Hori M, Rapoport SI, Reese TS and Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–326

    Article  PubMed  CAS  Google Scholar 

  112. Westergaard E (1980) Ultrastructural permeability properties of cerebral microvasculature under normal and experimental conditions after application of tracers.In: Advances in Neurology Vol. 28. Cervós-Navarro J. and Ferszt R (eds) Raven Press, New York, pp 55–77

    Google Scholar 

  113. Nagy Z, Pappius HM, Mathieson G and Hüttner I (1979) Opening of tight junctions in cerebral endothelium. I. Effect of hyperosmolar mannitol infused through the internal carotid artery

    Google Scholar 

  114. Smulders AP, Tormey JMcD, Wright EM (1972) The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder. J Membrane Biol 7:164–197

    Article  Google Scholar 

  115. DiBona DR, Civan MM (1973) Pathways for movement of ions and water across toad urinary bladder. J Membrane Biol 12: 101–128

    Article  CAS  Google Scholar 

  116. Wade JB, Revel JP and Discala VA (1973) Effect of osmotic gradients on intercellular junctions of the toad bladder. Amer J Physiol 224:407–415

    PubMed  CAS  Google Scholar 

  117. Milhorat TH, Donald DA and Hammock MK (1975) Experimental in-traxerebral movement of electron microscopic tracers of various molecular sizes. J Neurosurg 42:315–329

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Cervós-Navarro, J., Artigas, J., Mršulja, B.J. (1983). Morphofunctional Aspects of the Normal and Pathological Blood-Brain Barrier. In: Hossmann, KA., Klatzo, I. (eds) Cerebrovascular Transport Mechanisms. Acta Neuropathologica Supplementum, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68970-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68970-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12204-3

  • Online ISBN: 978-3-642-68970-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics