Skip to main content

UV Radiation in Photomorphogenesis

  • Chapter
Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

The ultraviolet range of the electromagnetic spectrum has been classified as vacuum UV from 100 nm to 200 nm, far UV from 200 nm to 300 nm, and near UV from 300 nm to 400 nm. The vacuum UV, which is absorbed by gaseous compounds in the air, such as oxygen or water vapour, can only be transmitted if generated in a vacuum. The longer wavelength limit of the far UV is determined by the cut-off at about 300 nm of terrestrial solar radiation. Around and below this wavelength biological effectiveness (i.e., generally cell damaging) comes into play because of the absorption properties of essential cell compounds such as proteins and nucleic acids. Near UV is characterized as the invisible part of the solar spectrum which impinges on the Earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen LH Jr, Gausman HW, Allen WA (1975) Solar ultraviolet radiation in terrestrial plant communities. J Environ Qual 4:285–294

    Article  Google Scholar 

  • Beggs C, Wellmann E (1983) Analysis of light-controlled anthocyanin synthesis in coleoptiles ofZea mays L.: The role of UV-B, blue, red and far-red light. Plant Physiol: (in press)

    Google Scholar 

  • Beggs C, Schneider-Ziebert U, Wellmann E (1983) Pigment formation in bean leaves as an indicator of general UV damage. Planta: (in press)

    Google Scholar 

  • Bener P (1972) Approximate values of intensity of natural ultraviolet radiation for different amounts of atmospheric ozone. Final Tech Rep Contract No DAJ 37–68-C 1017 US Army

    Google Scholar 

  • Bogenrieder A, Klein R (1977) Die Rolle des ĂœV-Lichtes beim sog. Auspflanzungsschock von Gewächshaussetzlingen. Angew Bot 51:99–107

    CAS  Google Scholar 

  • Caldwell MM (1968) Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol Monogr 38:243–268

    Article  Google Scholar 

  • Caldwell MM (1971) Solar UV irradiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology Vol 6. Academic Press, London New York, pp 131–177

    Google Scholar 

  • Caldwell MM (1981) Plant Response to Solar Ultraviolet Radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Encyclopedia of plant physiology new ser Vol 12 A. Springer, Berlin Heidelberg New York, pp 169–197

    Chapter  Google Scholar 

  • Dickson JG, Caldwell MM (1978) Leaf development of Rumex patientia L. (Polygonaceae) exposed to UV irradiation (280–320 nm). Am J Bot 65:857–863

    Article  Google Scholar 

  • Drumm H, Mohr H (1978) The mode of interaction between a blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the sorghum seedling. Photochem Photobiol 27:241–248

    Article  CAS  Google Scholar 

  • Drumm-Herrel H, Mohr H (1981) A novel effect of UV-B in a higher plant (Sorghum vulgare). Photochem Photobiol 33:391–398

    Article  CAS  Google Scholar 

  • Duell-Pfaff N, Wellmann E (1982) UV-B induced flavonoid synthesis in cell suspension cultures of parsley (Petroselinum hortense Hoffm): The role of phytochrome and a blue light photoreceptor. Planta 156:213–217

    Article  CAS  Google Scholar 

  • Fox FM, Caldwell MM (1978) Competitive interaction in plant populations exposed to supplementary ultraviolet-B radiation. Oecologia 36:173–190

    Article  Google Scholar 

  • Fraikin GY, Rubin LB (1979) Some physiological effects of near-ultraviolet light on microorganisms. Photochem Photobiol 29:185–188

    Article  CAS  Google Scholar 

  • Gardiner SE, Schröder J, Matern U, Hammer D, Hahlbrock K (1980) mRNA-dependent regulation of UDP-apiose synthase activity in irradiated plant cells. J Biol Chem 255:10752–10757

    Google Scholar 

  • Green AES, Cross HR, Smith LA (1980) Improved analytic characterisation of ultraviolet skylight. Photochem Photobiol 31:59–65

    Article  Google Scholar 

  • Hahlbrock K, Grisebach H (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30:105–130

    Article  CAS  Google Scholar 

  • Hahlbrock K, Knobloch KH, Kreuzaler F, Potts JRM, Wellmann E (1976) Coordinated induction and subsequent activity changes of two groups of metabolically interrelated enzymes. Eur J Biochem 61:199–206

    Article  PubMed  CAS  Google Scholar 

  • Jagger J (1976) Effects of near-ultraviolet radiation on microorganisms. Photochem Photobiol 23:451–454

    Article  PubMed  CAS  Google Scholar 

  • Klein RM (1978) Plants and near-ultraviolet radiation. Bot Rev 44:1–127

    Article  Google Scholar 

  • Klein WH, Goldberg B (1978) Monitoring UVB spectral irradiances at three latitudes. Proc Int Solar Energy Soc Congr New Delhi, India, Vol 1. Pergamon, New York, pp 400–414

    Google Scholar 

  • Klein WH, Goldberg B, Shropshire W Jr (1975) Instrumentation for the measurement of the variation, quantity and quality of sun and sky radiation. Sol Energy 19:115–122

    Article  Google Scholar 

  • Lindoo SJ, Caldwell MM (1978) Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production. Plant Physiol 61:278–282

    Article  PubMed  CAS  Google Scholar 

  • Lockhart JA, BrodfĂ¼hrer-Franzgrote U (1961) The effect of ultraviolet radiation on plants. In: Ruhland W (ed) Encyclopedia of plant physiology Vol XVI. Springer, Berlin Göttingen Heidelberg, pp 532–554

    Google Scholar 

  • Möhle B, Wellmann E (1982) Induction of phenylpropanoid compounds by UV-B irradiation in roots of seedlings and cell cultures of dill (Anethum graveolens L.). Plant Cell Rep 1:183–185

    Article  Google Scholar 

  • Mohr H (1961) Wirkungen kurzwelligen Lichtes. In: Ruhland W (ed) Encyclopedia of plant physiology Vol XVI. Springer, Berlin Göttingen Heidelberg, pp 439–531

    Google Scholar 

  • National Academy of Sciences (1979) Protection against depletion of stratospheric ozone by chlorofluorocarbons. Washington DC

    Google Scholar 

  • Ng YL, Thimann KV, Gordon SA (1964) The biogenesis of anthocyanin. X. The action spectrum for anthocyanin formation inSpirodela oligorrhiza. Arch Biochem Biophys 107:550–558

    Article  PubMed  CAS  Google Scholar 

  • Robberecht R, Caldwell MM (1978) Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia 32:277–287

    Article  Google Scholar 

  • Tevini M, Iwanzik W, Thoma W (1981) Some effects of enhanced UV-B radiation on the growth and composition of plants. Planta 153:388–394

    Article  CAS  Google Scholar 

  • Wellmann E (1974) Regulation der Flavonoidbiosynthese durch ultraviolettes Licht und Phytochrom in Zellkulturen und Keimlingen von Petersilie (Petroselinum hortense Hoffm.) Ber Dtsch Bot Ges 87:267–273

    Google Scholar 

  • Wellmann E (1975 a) UV-dose dependent induction of enzymes related to flavonoid biosynthesis in cell suspension cultures of parsley. FEBS Lett 51:105–107

    Article  PubMed  CAS  Google Scholar 

  • Wellmann E (1975 b) Der EinfluĂŸ physiologischer UV-Dosen auf Wachstum und Pigmentierung von Umbelliferenkeimlingen. In: Bancher E (ed) Industrieller Pflanzenbau. Tech Univ Wien. Selbstverlag, Wien, pp 229–239

    Google Scholar 

  • Wellmann E (1983 a) Control of anthocyanin formation in coleoptiles ofZea mays by a specific UV-B receptor and phytochrome. Naturwissenschaften: (in press)

    Google Scholar 

  • Wellmann E (1983 b) Demonstration of the protective function against UV-B damage of flavonoid pigments in germ roots of Petroselinum hortense. Naturwissenschaften: (in press)

    Google Scholar 

  • Wellmann E, Baron D (1974) Durch Phytochrom kontrollierte Enzyme der Flavonoidsynthese in Zellsuspensionskulturen von Petersilie (Petroselinum hortense Hoffm.). Planta 119:161–164

    Article  CAS  Google Scholar 

  • Wellmann E, Schneider-Ziebert U (1983) UV-B inhibition of phytochrome-dependent anthocyanin synthesis in cotyledons of mustard (Sinapis alba L.). Plant Physiol: (in press)

    Google Scholar 

  • Wellmann E, Schopfer P (1975) Phytochrome-mediated de novo synthesis of phenylalanine ammonia-lyase in cell suspension cultures of parsley Plant Physiol 55:822–827

    Article  PubMed  CAS  Google Scholar 

  • Wellmann E, Hrazdina G, Grisebach H (1976) Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus gracilis. Phytochemistry 15:913–915

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wellmann, E. (1983). UV Radiation in Photomorphogenesis. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics