Skip to main content
Log in

Plants and near-ultraviolet radiation

  • Published:
The Botanical Review Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1978

Conclusions

That the near UV has profound effects on biological material in general and plants in particular seems well established, but the implications of these findings in plant biology seem not to have been exploited. With a significant proportion of the solar spectrum at the earth’s surface in the 280–390 nm range the effects of near-UV wavelengths on ecosystems and in biosystematics should be considered. There is some evidence that alpine flora has, over evolutionary time, become adapted to the increased intensities of near UV, but whether this is a cause/effect situation has not been determined. The known ability of near UV to cause alterations in genomes-explored to date primarily in procaryotes-needs to be examined in vascular plants as a possible cause in ecotypic variation and as a factor in somatic and genome mutation.

One is struck by the paucity of information now available on the receptor systems for the various near-UV wavelengths known to affect physiological and biochemical systems within plants. Cells of higher plants contain many compounds capable of absorbing near-UV radiation and capable of reacting by excitation, photodegradation, photo-oxidation, etc., but in only a few instances have the photoreceptors for observed biological reactions been unequivocally identified and in almost none of these cases has the chain of reactions leading from absorption to observable reaction been traced with any assurance. In part, these lacunae in our knowledge are due to our ignorance of just what cells really do, but there is also a gulf between the information accumulated by the photochemist or photophysicist and that known to the botanist. One obvious example of this is the general failure of the photobiologist to specify adequately the physical parameters of their experiments; merely stating that near-UV “light” was supplied is grossly inadequate.

To end on an upbeat, it should be pointed out that plant photobiology is of growing importance in all areas of botany, that the instrumentation and techniques are now available, and that the concepts that must form the basis for research are at hand.

Conclusions

Il semble donc bien établi que les proches rayons ultraviolets aient des effets profonds sur la matière biologique en général et sur les plantes en particulier, mais on n’a pas encore exploité les implications de ces découvertes dans la biologie des plantes. Etant donné la part importante du spectre solaire à la surface de la terre qui se trouve entre 280 et 390 nm, on devrait aussi examiner les effets des proches rayons ultraviolets en biosystématique et sur les écosystèmes. On a constaté que dans une cortaine mesure la flore alpine, à travers les âges évolutionnaires, s’était adaptée aux intensités grandissantes des proches rayons ultraviolets, mais on n’a jamais pu établir si c’était une relation de cause à effet. C’est un fait bien établi que les proches rayons ultraviolets altèrent les formations héréditaires-et ceci a été essentiellement étudié jusqu’à maintenant dans les procaryotes-mais en devrait aussi étudier leur action sur les plantes vasculaires pour savior s’ils sont à l’erigine de variations écotypiques et s’ils contribuent à la mutation somatique et génétique.

On est frappé par l’insuffisance de renseignements disponibles à l’égard des systèmes récepteurs des proches rayons ultraviolets qui sont connus pour leur effet sur les systèmes biochimiques et physiologiques des plantes. Les cellules des plantes supérieures contiennent de nombreux corps composés capables d’absorber la radiation des proches rayons ultraviolets et capables aussi de réagir à l’excitation, à la photo-dégradation, à la photooxydation, etc. Mais il n’y a que peu de cas où l’on ait identifié de façon non-équivoque les photorécepteurs des réactions biologiques observées, et dans pratiquement aucun de ces cas a-t-on suivi de façon sûre la chaîne des réactions menant de l’absorption à la réaction observée. Ces lacunes dans nos informations proviennent, en partie, de notre ignorance du rôle précis des cellules, mais il existe aussi un fossé entre les connaissances acquises par le photochimiste ou le photophysicien et celles du botaniste. Un exemple évident de cet état de choses se trouve dans l’échec général des photobiologistes à définir de façon satisfaisante les limites réelles de leurs expériences. Il est totalement insuffisant de déclarer tout simplement qu’il y a eu une production de proches rayons ultraviolets.

Pour terminer d’une façon positive, il nous faut signaler que la photobiologie des plantes est une branche de plus en plus importante dans tous les domaines de la botanique, que les instruments et les techniques de recherche sont aujourd’hui à notre disposition, et que les concepts qui doivent être à la base des recherches sont là.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agulhon, H. 1912. Action de la lumière sur les diastases. Ann. Inst. Pasteur26: 38–47.

    CAS  Google Scholar 

  • Airth, R. L. 1961. Characteristics of cell-free fungal bioluminescence, pp. 263–273. In: W. D. McElroy and B. Glass (eds.). Light and Life. Johns Hopkins Univ. Press. Baltimore.

    Google Scholar 

  • — andG. E. Foerster. 1960. Some aspects of fungal bioluminescence. J. Cell. Comp. Physiol.56: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Allen, L. H., Jr.,H. W. Gausman, andW. A. Allen. 1975. Solar ultraviolet radiation in terrestrial plant communities. J. Environ. Quality4: 285–294.

    Article  Google Scholar 

  • Almquist, H. J. 1937. Chemical and physical studies on the anti-hemorrhagic vitamin. J. Biol. Chem.117: 517–523.

    CAS  Google Scholar 

  • Ambler, J. E., D. T. Krizak, andP. Semeniuk. 1975. Influence of UV-B radiation on early seedling growth and translocation of65Zn from cotyledons in cotton. Physiol. Plant.34: 177–181.

    Article  CAS  Google Scholar 

  • Amende, H. 1935. Zur biologiochen Wirkung gefilterten Sonnenlichtes. Strahlentherapie53: 308–316.

    Google Scholar 

  • Ananthaswamy, H. N. and A. Eisenstark. 1976. Single-strand breaks in phage DNA induced by near-UV light: Sensitization by l-tryptophan photoproduct (peroxide). 4th Mtg. Amer. Soc. Photobiol.

  • Andersen, R. A. andM. J. Kasperbauer. 1971. Effects of near-ultraviolet radiation and temperature on soluble phenols inNicotiana tabacum. Phytochémistry10: 1229–1232.

    Article  CAS  Google Scholar 

  • ——. 1973. Chemical composition of tobacco leaves altered by near-ultraviolet and intensity of visible light. Plant Physiol.51: 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D. R., E. L. Jenner, andF. E. Mumford. 1970. Optical rotatory dispersion and circular dichroism spectra of phytochrome. Biochem. Biophys. Acta22: 69–73.

    Google Scholar 

  • Arber, E. A. Newell. 1910. Plant Life in Alpine Switzerland. John Murray, Abemarle St., W., London.

    Google Scholar 

  • Arloing, S. 1885a. Influence de la lumière sur la végétation et les propriétés pathogenes duBacillus anthracis. C. R. Acad. Sci. Paris100: 378–381.

    Google Scholar 

  • —. 1885b. Influence du soleil sur la végétabilité des spores duBacillus anthracis. C. R. Acad. Sci. Paris101: 511–513.

    Google Scholar 

  • Arthur, J. M. 1930. Light and the green plant. Sci. Monthly31: 343–346.

    Google Scholar 

  • —. 1932. Red pigment production in apples by means of artificial light sources. Contr. Boyce Thompson Inst.4: 1–18.

    Google Scholar 

  • —. 1936. Radiation and anthocyanin pigments, pp. 1109–1118. In: B. M. Duggar (ed.). Biological Effects of Radiation. Vol. 2. McGraw-Hill Book Co., New York.

    Google Scholar 

  • — andJ. M. Newell. 1929. The killing of plant tissue and the inactivation of tobacco mosaic virus by ultraviolet radiation. Am. J. Bot.16: 338–353.

    Article  CAS  Google Scholar 

  • Asano, A. andA. F. Brodie. 1964. Oxidative phosphorylation of fractionated bacterial systems. XIV. Respiratory chains ofMycobacterium phlei. J. Biol. Chem.239: 4280–4291.

    PubMed  CAS  Google Scholar 

  • —,T. Kanishiro, andA. F. Brodie. 1965. Malate-vitamin K reductase, a phospholipid-requiring enzyme. J. Biol. Chem.240: 895–905.

    PubMed  CAS  Google Scholar 

  • Ashwood-Smith, M. J. and E. Grant. 1973. Dose dependent changes in the sedimentation characteristics of bacterial DNA produced, in vitro, by near ultra-violet irradiation (376 nm) and 8-methoxypsoralen. 1st Mtg. Am. Soc. Photobiol.

  • —,B. A. Bridges, andR. J. Munson. 1965. Ultraviolet damage to bacteria and bacteriophages at low temperatures. Science149: 1103–1105.

    Article  PubMed  CAS  Google Scholar 

  • —,J. Copeland, andJ. Wilcoxson. 1967. Sunlight and frozen bacteria. Nature214: 33–35.

    Article  PubMed  CAS  Google Scholar 

  • Ashworth, J. R. 1943. Ultra-violet and daylight rays in relation to the seasons and the solar cycle. Quart. J. Royal Meteor. Soc. London69: 275–285.

    Article  Google Scholar 

  • Asomaning, E. J. A. andA. W. Galston. 1961. Comparative study of phototropic response and pigment content in oat and barley coleoptiles. Plant Physiol.36: 453–464.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, W. R. G. 1937. The transmission of light and total radiation by leaves. Proc. Roy. Soc.B122: 26–29.

    Google Scholar 

  • Azizova, O. A., Z. P. Gribova, L. P. Kayushin, andM. K. Pulatova. 1966. Electron spin resonance of triplet states and free radicals appearing in porphyrins, aromatic amino acids and proteins under the effect of light. Photochem. Photobiol.5: 763–770.

    Article  CAS  Google Scholar 

  • Bachern, A. andC. I. Reed. 1930. The penetration of ultraviolet light through the human skin. Arch. Phys. Ther., X-Ray and Radium.11: 49–56.

    Google Scholar 

  • Baden, H. P., J. M. Parrington, J. D. A. Delhanty, andM. A. Pathak. 1972. DNA synthesis in normal and Xeroderma Pigmentosum fibroblasts following treatment with 8-methoxy psoralen and long wave ultraviolet light. Biochem. Biophys. Acta262: 247–255.

    PubMed  CAS  Google Scholar 

  • Bailey, A. A. 1932. Effects of ultraviolet radiation upon representative species ofFusarium. Bot. Gaz.97: 225–270.

    Article  Google Scholar 

  • Bain, J. A. andH. P. Rusch. 1943. Carcinogenesis with ultraviolet radiation of wave length 2,800-3,400A. Cancer Res.3: 425–430.

    Google Scholar 

  • Ballan, S. 1928. Pflanzenkultur im ultravioletten licht. Gartenzeit. Oesterr. Gartenbau Ges. Wein9: 131–133.

    Google Scholar 

  • Bancroft, W. D. 1943. The biochemistry of anthocyanins. Science98: 98–100.

    Article  PubMed  CAS  Google Scholar 

  • Bang, S. 1901. Die Wirkung des Lichtes auf Mikroorganismen. Mitt. Finsen’s Med. Lysinst.2: 1–107.

    Google Scholar 

  • Barker, R. E., Jr. 1968. The availability of solar radiation below 290 nm and its importance in photomodification of polymers. Photochem. Photobiol.7: 275–295.

    Article  CAS  Google Scholar 

  • Barnett, H. L. 1968. The effects of light, pyridoxine and biotin on the development of the mycoparasiteGonatobotryium fuscum. Mycologia60: 244–251.

    Article  CAS  Google Scholar 

  • Bass, A. M. 1948. Short wave-length cut-off filters for the ultraviolet. J. Opt. Soc. Amer.38: 977–979.

    Article  CAS  Google Scholar 

  • Batra, P. P. andG. Tollin. 1964. Phototaxis inEuglena. I. Isolation of the eyespot granules and identification of the eyespot pigments. Biochem. Biophys. Acta79: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Bawden, F. C. andA. Kleczkowski. 1959. Photoreactivation of nucleic acid from Tobacco Mosaic Virus. Nature183: 503.

    Article  PubMed  CAS  Google Scholar 

  • Bayne-Jones, S. andJ. S. Van der Lingen. 1923. The bactericidal action of ultraviolet light. Johns Hopkins Hospital Bulletin3: 11–16.

    Google Scholar 

  • Bender, F. L. andL. V. Ghilly. 1976. Qualitative and quantitative effects of radiation on pycnidial formation byDendrophoma obscurans. Can. J. Bot.54: 566–571.

    Article  Google Scholar 

  • Beebe, J. M. andG. W. Pirsch. 1958. Response of air-borne species ofPasturella to artificial radiation simulating sunlight under different conditions of relative humidity. Appl. Microbiol.6: 127–138.

    PubMed  CAS  Google Scholar 

  • Bell, G. R. 1956. On the photochemical degradation of 2,4-dichlorophenoxyacetic acid and structurally related compounds in the presence and absence of riboflavin. Bot. Gaz.183: 133–136.

    Article  Google Scholar 

  • Bell, L. N. andG. L. Merinova. 1961. Effect of dosage and wavelength of ultraviolet radiation on photosynthesis ofChlorella. Biophysika6: 21–26.

    Google Scholar 

  • Bellen, J. S. andG. Oates. 1960. Photodynamic inactivation of transforming principle. Biochem. Biophys. Acta42: 533–535.

    Article  Google Scholar 

  • Benedict, H. M. 1934. Effect of ultraviolet radiation on growth and on the calcium and phosphorus content of plants. Bot. Gaz.96: 330–341.

    Article  CAS  Google Scholar 

  • Bener, P. 1968. Approximate values of the spectral intensity of natural ultraviolet radiation at 0–5 km above sea level and for different amounts of ozone. Final Technical Report, U.S. Army Contract DAJA 37-68-C-1017, Davos, Switzerland.

  • —. 1969. Spectral intensity of natural ultraviolet radiation and its dependence on various parameters, pp. 351–358. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Ben-Hur, E. and M. M. Elkind. 1973. DNA cross-linking in Chinese hamster cells exposed to near ultraviolet light in the presence of psoralen. Ann. Mtg. Am. Photobiol. Soc.

  • Bensasson, R., E. J. Land, andB. Maudinas. 1976. Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation. Photochem. Photobiol.23: 289–193.

    Article  Google Scholar 

  • Berends, W., J. Postuma, J. S. Sussenbach, andH. I. X. Mazer. 1966. On the mechanism of some flavin-photosensitized reaction, pp. 22–36. In: E. C. Slater (ed.). Flavins and Flavoproteins. Elsevier, N.Y.

    Google Scholar 

  • Bergman, K. et al. (+ 11 authors). 1969.Phycomyces. Bact. Rev.33: 99–157.

    PubMed  CAS  Google Scholar 

  • Berliner, M. O. andP. B. Brand. 1962. Effects of monochromatic ultraviolet light on luminescence inPanus stipticus. Mycologia54: 415–421.

    Article  Google Scholar 

  • Beyer, R. E. 1958. Vitamin K1, a component of the mitochondrial oxidative phosphorylative system. Biochem. Biophys. Acta28: 663–664.

    Article  PubMed  CAS  Google Scholar 

  • —. 1959. The effect of ultraviolet light on mitochondria.II. Restoration of oxidative phosphorylation with Vitamin K1 after near-ultraviolet treatment. J. Biol. Chem.234: 688–692.

    PubMed  CAS  Google Scholar 

  • Bie, V. 1899. No title. Philadelphia Medical J.4: 655.

    Google Scholar 

  • Bieble, R. 1943a. Wirkung der UV-strahlen auf die Plasmapermeabilitat. Protoplasma37: 2–24.

    Google Scholar 

  • —. 1943b. Beobachtungen über UV-strahlen resistanz anthokyanhaltiger Zwiebel epedirmiszellen. Protoplasma37: 566–568.

    Article  Google Scholar 

  • Biggers, J. D. 1959. Photodynamic compounds in plants, pp. 71–79. In: J. W. Fairbairn (ed.). The Pharmacology of Plant Phenolics. Academic Press, N.Y.

    Google Scholar 

  • Biggs, R. H. andW. B. Sisson. 1975. Response of higher terrestrial plants to elevated UV-B irradiance. Chapter 4.5. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. Transportation, Washington, D.C.

    Google Scholar 

  • Billen, D. andM. M. Fletcher. 1974. Inactivation of dark-repair-deficient mutants ofEscherichia coli by sunlight. Int. J. Rad. Biol.26: 73–76.

    Article  CAS  Google Scholar 

  • Binder, F. F. andV. G. Lilly. 1975. Substitution of the radiation requirement for sporulation by host tissue inDendrophoma obscurans. Mycologia67: 1025–1231.

    Article  PubMed  CAS  Google Scholar 

  • Binns, W., L. F. James, andW. Brooksby. April 1964.Cymopterus watsoni: a photosensitizing plant for sheep. Vet. Med.59 (4): 375–379.

    Google Scholar 

  • Bishop, R. C. andR. M. Klein. 1975. Photo-promotion of anthocyanin synthesis in harvested apples. HortScience10: 126–127.

    CAS  Google Scholar 

  • Bjorn, L. O. 1967. The light requirement for different steps in the development of chloroplasts in excised wheat roots. Physiol. Plant.20: 483–499.

    Article  CAS  Google Scholar 

  • Blaauw, A. H. 1919. Licht und Wachstum. III. Die Erklärung des Phototropismus. Med. Landbouwhoogesch. Wageningen15: 89–204.

    Google Scholar 

  • Blank, F. 1958. Anthocyanins, flavones, xanthones. Handbuch Pflanzen-Physiol.10: 300–353.

    Google Scholar 

  • Blum, H. F. 1941. Photodynamic Action and Diseases Caused by Light. New York, Reinhold. Revised edition, 1964, Haffner Publ. Co., New York.

    Google Scholar 

  • —. 1955. Sunburn, pp. 487–528. In: A. Hallaender (ed.). Radiation Biology II. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  • —. 1959. Carcinogenesis by Ultraviolet Light. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • —. 1969. Hyperplasia induced by ultraviolet light: possible relationship to cancer induction, pp. 83–89. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • — andM. R. Mathews. 1952. Photorecovery from the effects of ultraviolet radiation in salamander larvae.39: 57–72.

    CAS  Google Scholar 

  • —,E. E. Barksdale, andH. G. Green. 1946. Urticaria solare. J. Inv. Dermatol.7: 109–115.

    Article  Google Scholar 

  • Blunt, K. andR. Cowan. 1930. Ultraviolet Light and Vitamin D in Nutrition. Univ. Chicago Press, Chicago, Ill.

    Google Scholar 

  • Bogin, E., T. Higashi, andA. F. Brodie. 1969. Extraparticulate chain interaction between different election transport particles. Science165: 1364–1367.

    Article  PubMed  CAS  Google Scholar 

  • Bonnier, G. 1880. De la variation avec l’altitude des matières colorés des fleurs chez une même espèce végétale. Bull. Soc. Bot. France27: 103–105.

    Google Scholar 

  • —. 1894a. Ann. Sci. Nat./bot/sér.7: 20, 217.

    Google Scholar 

  • —. 1894b. Les Plantes artiques comparées aux mêmes espèces des Alpes et des Pyrénées. Rev. Gen. Bot.6: 505–527.

    Google Scholar 

  • -. 1895. L’Adaptation des Plantes au Climat Alpin. Paris.

  • — andL. Mangin. 1886. L’action chlorophyllienne dans l’obscurité ultraviolette. C. R. Acad. Sci. Paris102: 123.

    Google Scholar 

  • Bottelier, H. P. 1934. Über den Einfluss aüsserer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile. Rec. Trav. Botan. Nederl.31: 475–582.

    Google Scholar 

  • Boutin, M. E. andR. M. Klein. 1972. Absence of phytochrome participation in Chlorophyll synthesis inEuglena. Plant Physiol.49: 656–657.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, E. J. 1946. The Chemical Aspects of Light, 2nd Edit. Oxford Univ. Press, N.Y.

    Google Scholar 

  • Bowen, J. R. andS. F. Yang. 1975. Photosensitized deamination of sulfuramino acids by flavin mononucleotide. Photochem. Photobiol.23: 201–203.

    Article  Google Scholar 

  • Brabham, D. E. and R. H. Biggs. July 1974. Photolysis of abscisic acid at 25°C. 2nd Mtg. Am. Photobiol. Soc.

  • ——. 1975. Optical properties: Penetration of UV-B into higher plant tissue. Chapter 4.1. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U. S. Dept. Transportation, Washington, D.C.

    Google Scholar 

  • - and -. (In Biggs & Sisson, 1975). Photolyses of abscisic acid by UV-B radiation.

  • -,F. M. Basiouny, and R. H. Biggs. July 1974. Responses of detached leaves and fruits to UV-B irradiation at high dose levels. 2nd Mtg. Am. Photobiol. Soc.

  • Bragg, P. D. 1971. Effect of near-ultraviolet light on the respiratory chain ofEscherichia coli. Can. J. Biochem.49: 492–495.

    Article  PubMed  CAS  Google Scholar 

  • — andC. Hou. 1967. Reduced nicotinamide adenine dinucleotide oxidation inEscherichia coli particles. I. Properties and cleavage of the electron transport chain. Arch. Biochem. Biophys.119: 194–201.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1968. Oxidative phosphorylation inEscherichia coli. Can. J. Biochem.46: 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Brandie, J. R., W. F. Campbell, W. B. Sisson, and M. M. Caldwell. 1975. Effects of ultraviolet irradiation on oxygen evolution and leaf ultrastructure inPisum sativum. 3rd Mtg. Am. Photobiol. Soc.

  • Brandt, W. H. 1963. Effects of near-ultraviolet radiation on growth ofVerticil-Hum in liquid culture. Am. J. Bot.50: 625–635.

    Google Scholar 

  • —. 1964. Morphogenesis inVerticillium: Effects of light and ultraviolet radiation on microsclerotia and melanin. Can. J. Bot.42: 1017–1023.

    Article  Google Scholar 

  • —. 1965. Morphogenesis inVerticillium: Reversal of the near-UV effect by catechol. BioScience15: 669–670.

    Article  Google Scholar 

  • —. 1967. Influence of near-ultraviolet light on hyphal elongation inVerticillium. Mycologia59: 736–739.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. A. Edwards. 1963. A morphogenetic factor produced byVerticillium. Am. J. Bot.50: 613.

    Google Scholar 

  • Braslau, D. and J. V. Dave. Effect of aerosols on the transfer of solar energy through realistic model atmospheres.III. Ground level fluxes in the biologically active bands .2850–.3700 microns. IBM Research April 1973. pp. 1–54.

  • Bridges, C. D. B. 1967. Biochemistry of visual processes, pp. 31–78. In: M. Florkin and E. H. Stotz (eds.). Comprehensive Biochemistry, Vol. 27. Elsevier, Amsterdam.

    Google Scholar 

  • Briggs, W. R. 1973. Studies on a possible photoreceptor for phototropism in corn. Carnegie Institution of Washington Yearbook.

  • -. June 1975. Membrane-associated yellow pigments and blue light photoresponses. 3rd Ann. Mtg. Amer. Soc. Photobiology (Abstr.).

  • — andM. L. Sargent. 1967. The effects of light on a circadian rhythm of conidiation inNeurospora. Plant Physiol.42: 1504–1510.

    Article  PubMed  Google Scholar 

  • Brighenti, L. 1957. Effetto di irradiazione con luce visibile e utra violetta sulla latticodeidrogenosi del lievito. Boll. Soc. Ital. Biol. Sper.33: 745–748.

    PubMed  CAS  Google Scholar 

  • Brinkman, R. T., A. E. S. Green, andC. A. Barth. 1966. A digitalized solar ultraviolet spectrum. NASA Tech. Rpt. 32–951. Jet Propulsion Lab, Pasadena, California.

    Google Scholar 

  • Brodführer, U. 1955. Der einfluss einer abgestuften Dosierung von ultravioletter Sonnenstrahlung auf die Wachstum der Pflanzen. Planta45: 1–56.

    Article  Google Scholar 

  • -. 1961. Der einfluss des roten und blauen spektral bereiches auf ultraviolett bestrahlte pflanzen. Unpublished, abstracted in Lockhart and Brodführer.

  • Brodie, A. F. 1961. Vitamin K and other quinones as coenzymes in oxidative phosphorylation in bacterial systems. Fed. Proc.20: 995–1003.

    PubMed  CAS  Google Scholar 

  • —. 1965. The role of naphthoquinones in oxidative metabolism, pp. 355–404. In: R. A. Morton (ed.). Biochemistry of Quinones. Academic Press, New York.

    Google Scholar 

  • -,M. M. Weber, and C. T. Gray. The role of vitamin K1 in coupled oxidative phosphorylation. Biochem. Biophys. Acta25: 448–449.

  • — andJ. Ballanlinc. 1960. Oxidative phosphorylation in fractionated bacterial systems. II. The role of Vitamin K. J. Biol. Chem.235: 226–231.

    PubMed  CAS  Google Scholar 

  • Brooks, M. M. 1926. Studies on the permeability of living cells. VII. The effects of light of different wave lengths on the penetration of 2, 6-debromophenol indophenol intoValonia. Protoplasma1: 305–312.

    Article  Google Scholar 

  • Brown, M. S. andR. B. Webb. 1972. Photoreactivation of 365 nm inactivation inEscherichia coli. Mut. Res.15: 348–352.

    CAS  Google Scholar 

  • Brown, S. J. andR. M. Klein. 1973. Effects of near ultraviolet and visible radiations in cell cycle kinetics in excised root meristems ofPisum sativum. Am. J. Bot.60: 554–560.

    Article  CAS  Google Scholar 

  • Brown, S., P. R. Lane, andI. A. Magnus. 1969. Skin photosensitivity from fluorescent lighting. Brit. J. Dermatol.81: 420–428.

    Article  CAS  Google Scholar 

  • Bruce, A. K. 1958. Response of potassium retentivity and survival of yeast to far-ultraviolet, near-ultraviolet and visible, and X-radiation. J. Gen. Physiol.41: 693–702.

    Article  PubMed  CAS  Google Scholar 

  • Buchbinder, L. 1942. The bacteriocidal effects of daylight and sunlight on chained gram-positive cocci in simulated room environment. Aerobiology Publ. 17. AAAS, Washington, D.C.

    Google Scholar 

  • —,M. Soloway, andE. B. Phelps. 1941. The survival rates of streptococci in the presence of natural, daylight, and sunlight and artificial illumination. J. Bact.42: 353–366.

    PubMed  CAS  Google Scholar 

  • Bucher, T. andJ. Kaspers. 1946. Lichtfilter für 280 nm. Naturwissenschaften33: 93–94.

    Google Scholar 

  • Buchner, H. 1892. Über den Einfluss des Lichtes auf Bakterien. Centr. Bakt. Parasit.12: 15–17.

    Google Scholar 

  • Bucholtz, A. F. 1931. The effect of monochromatic ultra-violet light of measured intensities on behavior of plant cells. Ann. Mo. Bot. Gdn.18: 489–508.

    Article  Google Scholar 

  • Buchta, L. 1914. Über den Einflus des Lichte auf die sprossung der Hefe. Centrabl. Bakt. II.41: 340–351.

    Google Scholar 

  • Buettner, K. J. K. 1969. The effects of natural sunlight on human skin, pp. 237–249. In: F. Urbach (ed.). Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Bünning, E. 1937. Phototropismus und Carotenoide. I. Phototropische Wirksamkeit von Strahlen verschiedener weilenlänge und strahlensabsorption im pigment beiPilobolus. Planta26: 719–736.

    Article  Google Scholar 

  • —. 1947. In den Waldern Nord-Sumatras. F. Dummlers Verlag, Bonn.

    Google Scholar 

  • —,L. Dorn, G. Schneiderhohn, undI. Thorning. 1953. Zur Funktion von Lactoflavin und Carotin beim Phototropismus und bei lichtbedingten Wachstumsbeinflussungen. Ber. Deutsch Bot. Ges.66: 333–340.

    Google Scholar 

  • Burchard, R. P. andS. B. Hendricks. 1967. Action spectrum for carotenogenesis inMyxococcus xanthus. J. Bact.97: 1165–1168.

    Google Scholar 

  • —,S. A. Cordon, andM. Dworkin. 1966. Action spectrum for the photolysis ofMyxococcus xanthus. J. Bact.91: 896–897.

    PubMed  CAS  Google Scholar 

  • Bush, F. A. 1928. Vita Glass. Gard. Chron.84: 356.

    Google Scholar 

  • Bushke, W., J. S. Friedenwald, andS. G. Moses. 1945. Effect of ultraviolet irradiation on corneal epithelium mitosis, nuclear fragmentation, post-traumatic cell movements, loss of tissue cohesion. J. Cell. Comp. Physiol.26: 147–164.

    Article  Google Scholar 

  • Burns, G. R. 1942. Photosynthesis and absorption in blue radiation. Am. J. Bot.29: 381–387.

    Article  CAS  Google Scholar 

  • Butler, W. L., S. B. Hendricks, andH. W. Siegelman. 1964. Action spectra of phytochrome in vitro. Photochem. Photobiol.3: 524–528.

    Article  Google Scholar 

  • Cabrera-Jaurez, E. 1964. “Black light” inactivation of transforming deoxyribonucleic acid fromHaemophilus influenzae. J. Bacti.87: 771–778.

    Google Scholar 

  • — andP. A. Swenson. 1975. Action spectrum for the oxygen-independent inactivation ofHaemophilus influenzae transforming DNA with near ultraviolet light. Photochem. Photobiol.21: 193–195.

    Article  Google Scholar 

  • —,J. K. Setlow, P. A. Swenson, andM. J. Peak. 1976. Oxygen-independent inactivation ofHaemophilus influenzae transforming DNA by monochromatic radiation: Action spectrum, effect of histidine and repair. Photochem. Photobiol.23: 309–313.

    Article  Google Scholar 

  • Cairns, W. L. andD. E. Metzler. 1971. Photochemical degradation of flavins. VI. A new photoproduct and its use in studying the photolytic mechanism. J. Am. Chem. Soc.93: 2772–2777.

    Article  PubMed  CAS  Google Scholar 

  • —,G. E. Treadwell, andD. E. Metzler. 1968. Products of the anaerobic photolysis of riboflavin, pp. 189–191. In: K. Yagi (ed.). Flavins and Flavoproteins. U. Tokyo Press. Japan.

    Google Scholar 

  • Caldwell, M. M. 1966. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol. Monogr.38: 243–268.

    Article  Google Scholar 

  • —. 1971. Solar UV irradiation and the growth and development of higher plants. Photophysiology6: 131–177.

    CAS  Google Scholar 

  • —. 1972. Biologically effective solar ultraviolet irradiation in the Arctic. Arctic Alpine Res.4: 39–43.

    Article  Google Scholar 

  • -. July 1974. Higher plant responses to enhanced intensities of solar UV-B radiation. 2nd Mtg. Am. Soc. Photobiol.

  • Calkins, J. 1975. Measurements of the penetration of solar UV-B into various natural waters, pp. 2–267, 2–296. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. Transportation. Washington, D.C.

    Google Scholar 

  • —,J. D. Buckles, andJ. R. Moeller. 1976. The role of solar ultraviolet radiation in ‘natural’ water purification. Photochem. Photobiol.24: 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan, A. A. 1962. Observations on perithecium production and spore discharge inPleurage setosa. Trans. Brit. Mycol. Soc.45: 249–254.

    Article  Google Scholar 

  • Calpouzos, L. andD. B. Lopes. 1970. Effects of light on pycnidum formation, sporulation and tropism bySeptoria nodorum. Phytopathology60: 791–794.

    Article  Google Scholar 

  • — andG. F. Stallknecht. 1967. Effects of light on sporulation ofCercospora beticola. Phytopathology57: 679–681.

    Google Scholar 

  • Calvert, J. G. andJ. N. Pitts, Jr. 1966. Photochemistry. John Wiley & Sons, N.Y.

    Google Scholar 

  • Campbell, R. N. 1962. Ultraviolet radiation as a probable cause of brown blotch of Honeydew Melon. Phytopathology52 (abstr.): 360.

    Google Scholar 

  • Campbell, W. F. 1975. Ultraviolet-radiation-induced ultrastructured changes in plant cells. Chapter 4.4. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. of Transportation. Washington, D.C.

    Google Scholar 

  • Cappelletti, C. 1930. La flora alpina ed i suoi adattamenti alle radiazioni ultraviolette del sole. Atti Real. Instituto Venato Sci. Lett. Arti.89: 291–321.

    Google Scholar 

  • Carlile, M. J. 1957. Phototropism ofPhycomyces sporangiophores. Nature180: 202.

    Article  Google Scholar 

  • —. 1962. Evidence for a flavoprotein photoreceptor inPhycomyces. J. Gen. Microbiol.28: 161–167.

    CAS  Google Scholar 

  • —. 1965. The photobiology of fungi. Ann. Rev. Plant Physiol.16: 175–202.

    Article  CAS  Google Scholar 

  • Carre, D. A., G. Thomas, andA. Favre. 1974. Conformation and functioning of tRNAs: Cross linked tRNAs as substrate for tRNA nucleotide-transferase and aminoacetyl synthetases. Biochemie56: 1089–1101.

    Article  CAS  Google Scholar 

  • Carrell, D. L., E. Steers, Jr.,K. M. Towe, andW. Shropshire, Jr. 1968. Phytochrome in etiolated annual rye. IV. Physical and chemical characterization of phytochrome. Biochem. Biophys. Acta168: 46–57.

    Google Scholar 

  • Carroll, R. B. 1952. Activation of sodium 2-(2-4-Dichlorophenoxy)-ethyl sulfate. Contr. Boyce Thompson Inst.16: 409–417.

    Google Scholar 

  • Curry, G. M. andH. E. Gruen. 1957. Negative phototropism ofPhycomyces in the ultra-violet. Nature179: 1028–1029.

    Article  PubMed  CAS  Google Scholar 

  • Castle, E. S. 1966. Light responses ofPhycomyces. Science154: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  • Cecco, M. 1928. Applicazione dei raggi ultravioletti alia ricera di sostanze fluorescenti nelle piante in rapporto ad alaini fenomenti di patologia végétale. Atti. R. Acad. Lincei VI. Rend. O. Sci. Fis Mat. Nat.8: 101–104.

    Google Scholar 

  • Chakrabarti, N. K. 1968. Some effects of ultraviolet radiation on resistance of barley to net blotch and spot blotch. Phytopathology58: 467–471.

    Google Scholar 

  • Charlier, M. andC. Helene. 1975. Photosensitized splitting pyrimidine dimers in DNA by indole derivatives and tryptophan-containing peptides. Photochem. Photobiol.21: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Charlton, K. M. 1953. The sporulation ofAlternaria solani in culture. Trans. Brit. Mycol. Soc.36: 349–355.

    Article  Google Scholar 

  • Checcucci, A., G. Colombetti, R. Ferrari, andF. Lenci. 1976. Action spectra for photoaccumulation of green and colorlessEuglena: Evidence for identification of receptor pigments. Photochem. Photobiol.23: 51–54.

    Article  PubMed  CAS  Google Scholar 

  • Christenberry, G. A. 1938. A study of the effect of light of various periods and wave lengths on the growth and asexual reproduction ofChoanephora cucurbitarum. (Berk, and Rav.) Thaxter. J. Elisha Mitchell Soc.54: 297–310.

    Google Scholar 

  • Chu, E. H. Y. 1965. Effects of ultraviolet radiation on mammalian cells. I. Induction of chromosome aberrations. Mut. Res.2: 75–94.

    CAS  Google Scholar 

  • Clark, J. B. andG. R. Lister. 1975. Photosynthetic action spectra of trees. II. The relationship of cuticle structure to the visible and ultraviolet spectral properties of needles from four coniferous species. Plant Physiol.55: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, R. K. 1964. Phototoxis in microoorganisms. Photophysiology2: 51–77.

    Google Scholar 

  • —. 1970. Light and Living Matter. Volume 1. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Cline, M. G. andF. B. Salisbury. 1966. Effects of ultra-violet alone and simulated solar ultraviolet radiation on the leaves of higher plants. Nature211: 484–486.

    Article  PubMed  CAS  Google Scholar 

  • Cline, M. G., G. I. Conner, andF. B. Salisbury. 1969. Simultaneous reactivation of ultraviolet damage inXanthium leaves. Plant Physiol.44: 1674–1678.

    Article  PubMed  CAS  Google Scholar 

  • Coblentz, W. W. and H. R. Fulton. 1924. A radiometric investigation of the germicidal action of ultra-violet radiation. U.S. Natl. Bur. Std. Paper 495.

  • Coetzee, W. F. andE. C. Pollard. 1975. Near ultraviolet inactivation studies onEscherichia coli trytophan synthatase. Photochem. Photobiol.22: 29–32.

    Article  CAS  Google Scholar 

  • Coleman, J. 1927. Vita Glass. Gard. Chron.81: 237.

    Google Scholar 

  • Colla, S. 1927. L’azione dei raggi ultravioletti sull piante etiolate. Boll. Soc. Ital. Biol. Speri.2: 724–726.

    Google Scholar 

  • —. 1930. Formazione della chlorofilla nella piante esposte alla luce di Wood. Annale Bot.18: 329–349.

    Google Scholar 

  • —. 1931. Sula fioritura alla sola luce di Wood. Nuovo Gior. Bot. Stal.38: 509–514.

    Google Scholar 

  • Collaer, P. 1934. Le rôle de la lumière dans l’établissement de la limite supérieure des fôrets; observations faites dans le canton des Grisons (1929-1931). Schweiz Bot. Ges Berichte43: 90–125.

    Google Scholar 

  • Colombetti, G., F. Lenci, J. F. McKellar, andG. O. Phillips. 1975. Lightinduced effects on a flavoprotein, D-amino-acid oxidase. Photochem. Photobiol.21: 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J. S. 1970. Photoreactivation in animal cells. Photophysiology5: 191–233.

    PubMed  CAS  Google Scholar 

  • — andH. F. Blum. 1959. Dose relationships and oxygen dependence in ultraviolet and photodynamic hemolysis. Jour. Comp. Cell. Physiol.53: 41–60.

    Article  CAS  Google Scholar 

  • Cooke, B. M. andD. G. Jones. 1970. The effect of near-ultraviolet irradiation and agar medium on the sporulation ofSeptoria nodorum andS. tritici. Trans. Brit. Mycol. Soc.54: 221–226.

    Article  Google Scholar 

  • Coome, D. E. 1957. The spectral composition of shade light in woodlands. J. Ecol.45: 823–830.

    Article  Google Scholar 

  • Corrivon, Hy. 1900. Les Plantes des Alpes. Imprimerie Jules Carey, Genève.

    Google Scholar 

  • Crane, F. L. 1960. Isolation and characterization of the coenzyme Q (ubiquinone) group and plastoquinone, pp. 36–78. In: G. E. W. Wolstenholme and C. M. O’Connor (eds.). Quinones in Electron Transport. Ciba Foundation Symposium #37. Little, Brown & Co., Boston.

    Google Scholar 

  • Creed, D., H. Werbin, andE. T. Strom. 1971. Photochemistry of electrontransport quinones. II. Model studies with plastoquinone-1 (2, 3-dimethyl-5-3 methyl but 2-enyl), -1, 4-benzoquinone. J. Am. Chem. Soc.93: 502–511.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, I. J. andE. M. Clare. January 1943. A fluorescent alkaloid in rye-grass (Lolium perenne L.). New Zeal. Jour. Sci. & Technol. B. Gen. Sect.24: 167B-178B.

    Google Scholar 

  • Curtis, C. R. 1964. Physiology of sexual reproduction inHypomyces solani f.cucurbitae.II. Effects of radiant energy on sexual reproduction. Phytopathology54: 1141–1145.

    Google Scholar 

  • —. 1972. Action spectrum of the photoinduced sexual stage in the fungusNectria haematococca Berk. & Br. var.cucurbitae (Snyder & Hansen) Dengley. Plant Physiol.49: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Curry, G. M. 1969. Phototropism, pp. 245–273. In: M. B. Wilkins (ed.). The Physiology of Plant Growth and Development. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  • — andH. E. Gruen. 1961. Dose-response relationships at different wavelengths in phototropism ofAvena. pp. 115–157. In: B. C. Christensen and B. Buchmann (eds.). Progress in Photobiology. Elsevier Publ. Co., N.Y.

    Google Scholar 

  • —,K. V. Thimann, andP. M. Ray. 1956. The base curvature response ofAvena seedlings to the ultraviolet. Physiol. Plant.9: 429–440.

    Article  CAS  Google Scholar 

  • ——. 1961. Phototropism; the nature of the photoreceptor in higher and lower plants, pp. 127–134. In: B. C. Christensen and B. Buchmann (eds.). Progress in Photobiology. Elsevier Publ. Co., N.Y.

    Google Scholar 

  • Daikoff, S. andJ. Scheibe. 1973. Action spectra for chromatic adaptation inTolypothrix tennis. Plant Physiol.51: 382–385.

    Article  Google Scholar 

  • Dangeard, P. A. 1914. Sur le pouvoir de pénétration des rayons violets et ultraviolets au travers des feuilles. C. R. Acad. Sci. Paris158: 369–370.

    Google Scholar 

  • Daniel, I. W. andH. P. Rusch. 1962. Method for inducing sporulation ofPhysarum polycephalum. J. Bacti.83: 1244–1250.

    CAS  Google Scholar 

  • Daniels, F., Jr. 1964. Man and radiant energy: solar radiation, pp. 969–987. In: D. B. Dill, E. F. Adolph and C. G. Wilber (eds.). Handbook of Physiology, Section 4: Adaptation to the environment. American Physiol. Society, Washington, D.C.

    Google Scholar 

  • —. 1964. Sun exposure and skin aging. N.Y. State J. Medicine64: 2006–2009.

    Google Scholar 

  • —. 1965. A simple microbiological method for demonstrating phototoxic compounds. J. Invest. Dermat.44: 259–263.

    CAS  Google Scholar 

  • —. 1975. Sunlight, pp. 126–152. In: D. Schottenfeld (ed.). Cancer Epidemiology and Prevention. Current Concepts. C. C. Thomas, Springfield, Ill.

    Google Scholar 

  • Danpure, H. J. andR. M. Tyrell. 1976. Oxygen-dependence of near UV (365 nm) lethality and the interaction of near UV and X rays in two mammalian cell lines. Photochem. Photobiol.23: 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Dantsig, N. M., D. N. Lazarev, andM. V. Sokolov. 1967. Ultraviolet installations of beneficial action. Optics6: 1872–1876.

    CAS  Google Scholar 

  • Davies, R. E. 1969. Chemical dosimetry of ultraviolet light, pp. 437–443. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, New York.

    Google Scholar 

  • Davson, H. 1973. The Physiology of the Eye. Third Edit. Academic Press, N.Y.

    Google Scholar 

  • Day, R. S., Ill andB. Muel. 1974. Ultraviolet inactivation of the ability ofE. coli to support the growth of phage T7: an action spectrum. Photochem. Photobiol.20: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • DeCandolIe, C. 1892. Etude de l’action des rayons ultraviolets sur la formation des fleurs. Arch. Sci. Phys. et Natur. Genève.28: 265–277.

    Google Scholar 

  • DeFabo, E. C., R. W. Harding, andW. Shropshire, Jr. 1976. Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis inNeurospora crassa. Plant Physiol.57: 400–445.

    Article  Google Scholar 

  • Dehorter, B. 1976. Induction des périthèces deNectria galligena Bres. par un photo composé mycélien absorbant a 310 nm. Can. J. Bot.54: 600–604.

    Article  Google Scholar 

  • Dekker, R. H., B. N. Srinivasan, J. R. Huber, andK. Weiss. 1973. Photochemistry of flavins. I. Conventional and laser flash photolysis study of alloxazine. Photochem. Photobiol.18: 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Delbrück, M. andW. Shropshire, Jr. 1960. Action and transmission spectra ofPhycomyces. Plant Physiol.35: 194–204.

    Article  PubMed  Google Scholar 

  • — andD. Varju. 1961. Photoreactions inPhycomyces. J. Gen. Physiol.44: 1177–1188.

    Article  Google Scholar 

  • Denffer, D. von andL. Schlitt. 1951. Blühforderung durch ultraviolet bestrahlung. Naturwissenschaften24: 564–565.

    Article  Google Scholar 

  • Dennison, D. S. 1959. Gallic acid inPhycomyces sporangiophores. Nature184: 2036.

    Article  Google Scholar 

  • —. 1964. The effect of light on the geotropic responses ofPhycomyces sporangiophores. J. Gen. Physiol.47: 651–665.

    Article  PubMed  CAS  Google Scholar 

  • Detwiler, S. B. 1931. The effect of ultra-violet light on the germination of seeds and growth of seedlings ofRibes rotundifolium Mich. J. Forestry29: 131–133.

    Google Scholar 

  • Diehn, B. 1969. Action spectra of the phototactic responses inEuglena. Biochem. Biophys. Acta177: 136–143.

    PubMed  CAS  Google Scholar 

  • — andB. Kint. 1970. The flavin nature of the photoreceptor molecule for phototaxis inEuglena. Physiol. Chem. and Physics2: 483–488.

    CAS  Google Scholar 

  • Diener, U. L. 1955. Sporulation in pure culture byStemphylium solani. Phytopathology45: 141–145.

    Google Scholar 

  • Diethelm, R. 1970. Skin cancer from fluorescent lamp. Schweiz Med. Wochenschr.100: 1159–1160.

    PubMed  CAS  Google Scholar 

  • Dix, W. 1929. Vegetationsversuche mit ultraviolette Strahlen durchlassigem Glas. Gartenbauwiss.2: 365–368.

    Google Scholar 

  • Dorno, C. 1911. Studie über Licht und Luft der Hochgebirges. Braunschweig.

  • Dostál, R. 1967. On Integration in Plants. (Translated by J. M. Kiely.) Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Doyle, R. J. andH. E. Kubitschek. 1976. Near ultraviolet light inactivation of an energy-independent membrane transport system inSaccharoymes cerevisiae. Photochem. Photobiol.24: 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Downer, A. andT. P. Blunt. 1877. Researches on the effect of light upon bacteria and other organisms. Proc. Roy. Soc. (London)26: 488–500.

    Article  Google Scholar 

  • Downey, R. J. 1962. Naphthoquinone intermediate in the respiration ofBacillus stearothermophilus. J. Bact.84: 953–960.

    PubMed  CAS  Google Scholar 

  • Drummond, A. J. andH. A. Wade. 1969. Instrumentation for the measurement of solar ultraviolet radiation. pp. 391–407. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Dubrov, A. P. 1960. Photoreactivation of plant cells. Biophysics5: 438–445.

    CAS  Google Scholar 

  • -. 1963. Gurskii, ostapovich and sakalov (cited in: The action of ultraviolet radiation on plants). Akad. Nauk USSR, 124 pp.

  • Duine, J. A. andW. Berends. 1966. Photoreactivation of transforming DNA by cytochrome b2 from yeast. Biochem. Biophys. Res. Comm.24: 888–891.

    Article  PubMed  CAS  Google Scholar 

  • Dulbecco, R. andJ. G. Weigle. 1952. Inhibition of bacteriophage development in bacteria illuminated with visible light. Experienta8: 386–387.

    Article  CAS  Google Scholar 

  • Dunkelman, L. andR. Scolnik. 1959. Solar spectral irradiance and vertical atmospheric attenuation in the visible and ultraviolet. J. Opt. Soc. Amer.49: 356–367.

    Article  Google Scholar 

  • Earl, E. O. andJ. G. Torrey. 1965. Colony formation by isolatedConvulvulus cells plated on defined media. Plant. Physiol.40: 520–524.

    Article  Google Scholar 

  • Ebbesen, I. 1961. Seasonal variation in the ultraviolet and infrared radiation from sun and sky at Copenhagen. pp. 102–108. In: B. C. Christensen and B. Buchman (eds.). Progress in Photobiology. Elsevier Publ. Co., N.Y.

    Google Scholar 

  • Ehrismann, O. andW. Noethling. 1932. Über die baktericide Wirkung monochromatischen Lichtes. Zeit. Hyg.113: 597–628.

    Article  Google Scholar 

  • Eisenstark, A. 1970. Sensitivity ofSalmonella typhimurium recombinationless (rec) mutants to visible and near-visible light. Mut. Res.10: 1–6.

    CAS  Google Scholar 

  • —. 1971. Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells. Adv. Genetics16: 167–198.

    Article  CAS  Google Scholar 

  • —. 1973. Tryptophan photoproduct as a genetic probe: Effects on bacteria. Stadler Sympos., Vol.5: 49–60.

    CAS  Google Scholar 

  • — andD. Rudd. 1970. Repair in phage and bacteria inactivated by light from fluorescent and photolamps. Biochem. Biophys. Res. Comm.38: 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Eisner, T. et al. 1973. Plant taxonomy: Ultraviolet patterns of flowers visible as fluorescent patterns in pressed herbarium specimens. Science79: 486–487.

    Article  Google Scholar 

  • Eisner, T., R. E. Silberglied, D. Aneshansley, J. E. Carrel, andH. C. Howland. 1969. Ultraviolet video-viewing: The television camera as an insect eye. Science166: 1172–1174.

    Article  PubMed  CAS  Google Scholar 

  • Eleaboss, W. 1973. Light Sources. Crane Russak and Co., N.Y.

    Google Scholar 

  • Elliott, W. M. andJ. Shen-Miller. 1976. Similarity in dose responses, action spectra and red light responses between phototropism and photoinhibition of growth. Photochem. Photobiol.23: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Elterman, L. 1968. Environmental research paper 46. Air Force Cambridge Research Lab. Hanscom Field, Mass.

    Google Scholar 

  • Eltinge, E. T. 1928. The effects of ultra-violet radiation upon higher plants. Ann. Mo. Bot. Gdn.15: 169–240.

    Article  Google Scholar 

  • Engelsma, G. 1974. On the mechanism of the changes in phenylalanine ammonialyase activity induced by ultraviolet and blue light in gherkin hypocotyls. Plant Physiol.54: 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Environmental Studies Board. 1973. Biological impacts of increased intensities of solar ultraviolet radiation. National Acad. Sci. U.S. Washington, D.C.

    Google Scholar 

  • Epel, B. andW. L. Butler. 1969. Cytochrome a3: Destruction by light. Science166: 621–622.

    Article  PubMed  CAS  Google Scholar 

  • Epel, B. L. andW. L. Butler. 1970. Inhibition of respiration inPrototheca zopfii by light. Plant Physiol.45: 728–734.

    Article  PubMed  CAS  Google Scholar 

  • Epel, B. andB. W. Krauss. 1966. The inhibitory effect of light on growth ofPrototheca zopfii Kruger. Biochem. Biophys. Acta120: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, J. H. 1970. Ultraviolet carcinogenesis. Photophysiology5: 235–273.

    PubMed  CAS  Google Scholar 

  • —. 1971. Adverse cutaneous reactions to the sun. pp. 5–43. In: F. D. Malkinson and R. W. Rearson (eds.). Yearbook of Dermatology. Yearbook Med. Publ., Chicago, Ill.

    Google Scholar 

  • Ergashev, A., Z. N. Abdurakhmanova, V. K. Kichitov, andY. S. Nasyrov. 1971. Effect of natural UV radiation on photosynthetic assimilation of carbon. pp. 226–231. In: O. V. Zalenskii (ed.). Fotosen. Isol. Z. Soln. Energ. Leningrad.

    Google Scholar 

  • Eriksson, T. 1965. Studies on the growth requirements and growth measurements of cell cultures ofHaplopappus gracilis. Physiol. Plant.18: 976–983.

    Article  CAS  Google Scholar 

  • Eugster, J. andW. Hauptmann. 1934. Durchdringende Umgebungsstrahlung und Zell Wachstum. Strahlentherapie49: 223–237.

    Google Scholar 

  • Everett, M. andK. V. Thimann. 1968. Second positive phototropism in theAvena coleoptile. Plant Physiol.43: 1786–1792.

    Article  PubMed  CAS  Google Scholar 

  • Everett, M. A., R. L. Olson, andR. M. Sayre. 1965. Ultraviolet erythema. Arch. Dermatol.92: 713–719.

    Article  PubMed  CAS  Google Scholar 

  • —,E. Yeargers, R. M. Sayre, andR. L. Olson. 1966. Penetration of epidermis by ultraviolet rays. Photochem. Photobiol.5: 533–542.

    Article  PubMed  CAS  Google Scholar 

  • Ewing, D. T., F. S. Tomkins, andO. Kamin. 1943. The ultraviolet absorption of vitamin K1, and the effect of light on the vitamin. J. Biol. Chem.147: 233–241.

    CAS  Google Scholar 

  • Favre, A., A. M. Michelson, andM. Yaniv. 1971. Photochemistry of 4-thiouridine inEscherichia coli transfer RNA. J. Mole. Biol.58: 367–379.

    Article  CAS  Google Scholar 

  • — andJ. L. Fourrey. 1974. Intramolecular cross-linking of singlestranded copolymers of 4-thiouridine and cytidine. Biochem. Biophys. Res. Comm.58: 507–515.

    Article  PubMed  CAS  Google Scholar 

  • Ferron, W. L. 1971. DNA aberrations following irradiation of recombinationless (rec A) mutants ofS. typhimurim. Diss. Kansas State U., Manhattan.

  • —,A. Eisenstark, andD. Mackay. 1972. Distinction between farand near-ultraviolet light killing of recombinationless (rec A)Salmonella typhimurium. Biochem. Biophys. Acta277: 651–658.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, T. B. (ed.). 1974. Sunlight and Man. Univ. Tokyo Press, Japan.

    Google Scholar 

  • — andM. A. Pathek. 1959. Historical aspects of methoxypsoralen and other furocoumarins. J. Inv. Derm.32: 229–231.

    Article  CAS  Google Scholar 

  • ——,I. A. Magnus, andW. L. Curwen. 1963. Abnormal reactions of man to light. Annu. Rev. Med.14: 195–214.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer, A. S., L. C. Harber, J. S. Cook, andR. L. Baer. 1966. Mechanism of in vitro photohemolysis in erythropoietic protoporphyrea (EPP). J. Invest. Dermat.45: 505–509.

    Google Scholar 

  • Fluke, D. J. andR. B. Setlow. 1954. Water-prism ultraviolet monochromators. J. Pot. Soc. Amer.44: 327–330.

    Google Scholar 

  • Foley, R. F. 1963. A physiological disturbance caused by solar ultraviolet radiation that is affecting some vegetable crops in Idaho. Proc. Am. Soc. Hort. Sci.83: 721–727.

    Google Scholar 

  • Forbes, P. D. 1974. Influence of continued exposure to ultraviolet light (UVL) on UVL-induced tumors. 2nd Mtg. Amer. Photobiol. Soc. July.

  • Fork, D. C. andJ. Amesz. 1970. Spectrophotometric studies of the mechanism of photosynthesis. Photophysiology5: 97–126.

    PubMed  CAS  Google Scholar 

  • Ford, J. M. 1947. Saltant production by wave lengths of visible and long ultraviolet monochromatic irradiation, and a comparison with saltants produced by short wave lengths of monochromatic ultraviolet radiation in the fungusChaetomium globosum. J. Gen. Phys.30: 211–216.

    Article  CAS  Google Scholar 

  • Foy, N. R. 1931. The use of filtered ultraviolet light in the diagnosis of the various types of rye-grass in New Zealand. N. Z. J. Agr.43: 389–400.

    CAS  Google Scholar 

  • Fraser, R. S. S., U. E. Loening, andM. M. Yeoman. 1967. Effect of light on cell division in plant tissue cultures. Nature215: 873.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. G. andJ. M. Knox. 1968. The action spectrum of photocontact dermatitis caused by halogenated salicylanilides and related compounds. Arch. Dermat.97: 130–136.

    Article  CAS  Google Scholar 

  • —,H. I. Hudson, andR. Carnes. 1970. Ultraviolet wave length factors in solar radiation and skin cancer. Intl. J. Dermatol.9: 232–235.

    Article  CAS  Google Scholar 

  • Fridborg, G. andT. Eriksson. 1975. Partial reversal by cytokinin and (2-chloroethyl)-trimethyl ammonium chloride of near-ultraviolet inhibited growth and morphogenesis in callus cultures. Physiol. Plant.34: 162–166.

    Article  CAS  Google Scholar 

  • Fries, N. 1960. The effect of adenine and kinetin on growth and differentiation ofLupinus. Physiol. Plant.13: 468–481.

    Article  CAS  Google Scholar 

  • Fritz, S. 1957. Solar energy on clear and cloudy days. Scientific Monthly84(2): 55–65.

    Google Scholar 

  • Fujita, Y. andA. Hattori. 1962. Photochemical interconversion between precursors of phycobilin chromoproteids inTolypothrix tenuis. Plant Cell Physiol.3: 209–220.

    CAS  Google Scholar 

  • Fujita, M. S., Ishi Kawa, andN. Shimazono. 1966. Respiratory chain and phosphorylation site of the sonicated membrane fragments ofMicrococcus lysideikticus. J. Biochem. (Japan).59: 104–114.

    CAS  Google Scholar 

  • Fukuyama, T. T. and H. S. Moyed. 1962. Inhibition of cell growth by photooxidation products of indole-3-acetic acid. Bacti. Proc, p. 124.

  • ——. 1964. Inhibition of cell growth by photo-oxidation products of indole-3-acetic acid. J. Biol. Chem.239: 2392–2397.

    PubMed  CAS  Google Scholar 

  • Fuller, H. J. 1930. Stimulatory effects of ultraviolet radiation upon higher plants. Science75: 535–536.

    Article  Google Scholar 

  • —. 1931. Stimulatory effects of radiation from a quartz mercury vapor arc upon higher plants. Ann. Mo. Bot. Gdn.18: 17–39.

    Article  Google Scholar 

  • —. 1932. The injurious effects of ultra-violet and infra-red radiation on plants. Ann. Mo. Bot. Gdn.19: 79–84.

    Article  Google Scholar 

  • Galston, H. W. 1950. Riboflavin, light, and the growth of plants. Science111: 619–624.

    Article  PubMed  CAS  Google Scholar 

  • — andR. S. Baker. 1949. Studies on the physiology of light action. II. The photodynamic action of riboflavin. Am. J. Bot.36: 773–780.

    Article  Google Scholar 

  • ——. 1951. Studies on the physiology of light action.III. Light activation of a flavoprotein enzyme by reversal of a naturally occurring inhihibition. Am. J. Bot.38: 190–195.

    Article  CAS  Google Scholar 

  • —,J. Bonner, andR. S. Baker. 1953. Flavoprotein and peroxidose as components of the indoleacetic acid oxidase system of peas. Arch. Biochem. Biophys.42: 456–470.

    Article  PubMed  CAS  Google Scholar 

  • Gerrard, L. A. andJ. R. Brandie. 1975. Effects of UV radiation on component processes of photosynthesis. Chapter 4.3. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. Transportation. Washington, D.C.

    Google Scholar 

  • Gates, F. L. 1929. A study of the bactericidal action of ultraviolet light. II. The effect of various environmental factors and conditions. J. Gen. Physiol.13: 249–260.

    Article  CAS  PubMed  Google Scholar 

  • Gates, D. M. andR. Janke. 1966. The energy environment of the alpine tundra. Oecol. Plant.1: 39–61.

    Google Scholar 

  • Gates, D., H. J. Keegan, J. C. Schleter, andV. R. Weidner. 1965. Spectral properties of plants. Applied Optics4: 11–20.

    Article  Google Scholar 

  • Gausman, H. W., R. R. Rodriguez, andD. E. Escobar. 1975. Ultraviolet radiation reflectance, transmittance and absorptance by plant leaf epidermises. Agron. J.67: 720–724.

    Article  Google Scholar 

  • Gautheret, R. G. 1961. Action de la lumière et de la température sur la néoformation de racines par la tissus de Topinambour cultivés in vitro. C. R. Acad. Sci. (Paris)252: 2791–2794.

    Google Scholar 

  • Gebhart, R., R. Bojkov, andJ. London. 1970. Stratospheric ozone: A comparison of observed and computed models. Contrib. Atmosph. Physics43: 209–227.

    CAS  Google Scholar 

  • Gentner, G. 1928. Über die Verwendbarkeit von ultravioletten Strahlen bei der sammenprüfung. Prakt. Blatt. Pflanzenb. Pflanzensch.28: 166–172.

    Google Scholar 

  • Gessner, F. 1934. Wachstum und wanddehnbarkeit anHelianthus hypocotyl. Jahrb. Wiss. Bot.80: 143–168.

    Google Scholar 

  • —. 1938. Die Beziehung zwischen licht intensitat und assimilation bei submersen Wasserpflanzen. Jahrb. Wiss. Bot.86: 491–526.

    CAS  Google Scholar 

  • —. 1939. Die Wirkung des lichtes und der ultravioletten Strahlung auf die Pflanzenatmung. Planta29: 165–178.

    Article  CAS  Google Scholar 

  • -. 1955. Hydrobotanik. I. Energie Haushalt. Berlin, pp. 113–122.

  • Giese, A. C. 1938a. Sublethal effects of long wavelength ultra-violet. Science87: 326–327.

    Article  PubMed  CAS  Google Scholar 

  • —. 1938b. The effect of ultraviolet radiations of various wavelengths upon cleavage of sea urchin eggs. Biol. Bull.75: 238–247.

    Article  Google Scholar 

  • —. 1971. Photosensitization by natural pigments. Photophysiology6: 77–129.

    CAS  Google Scholar 

  • Gillard, J. M. andG. Tollen. 1974. Effect of complexation of flavin radical with tryptophan on electron transfer rates: a model for flavin-protein interactions. Biochem. Biophys. Res. Comm.58: 328–336.

    Article  PubMed  CAS  Google Scholar 

  • Gilles, E. 1939. Effets des rayons ultraviolets sur les végétaux supérieurs. Rév. Gen. Bot.51: 327–353.

    Google Scholar 

  • Gola, G. 1927. Sulla riflessione di radiazione ultraviolette per parte de alcuni organi vegetali. Nuovo Giorn. Bot. Ital. n.s.34: 143–156.

    Google Scholar 

  • Goldberg, B. andW. H. Klein. 1971. Comparison of normal incident solar energy measurements at Washington, D.C. Solar Energy13: 311–321.

    Article  Google Scholar 

  • Goldsmith, T. H. 1961. The color vision of insects. pp. 771–779. In: W. D. McElroy and B. Glass (eds.). Light and Life. Johns Hopkins Press, Baltimore, Md.

    Google Scholar 

  • —. 1964. The visual system of insects. pp. 397–462. In: M. Rockstein (ed.). The Physiology of Insects. Academic Press, N.Y.

    Google Scholar 

  • — andH. R. Fernandez. 1968. Comparative studies of crustacean spectral sensitivity. Zeit. Vgl. Physiol.60: 156–175.

    Article  Google Scholar 

  • Goldthwaite, J. J., J. C. Bristol, A. C. Gentile, andR. M. Klein. 1971. Lightsuppressed germination of California poppy seed. Can. J. Bot.49: 1655–1659.

    Article  Google Scholar 

  • Goodeve, C. F. 1934. Vision in the ultra-violet. Nature134: 416–417.

    Article  Google Scholar 

  • Goodwin, R. H. 1941. On the inhibition of the first internode ofAvena by light. Am. J. Bot.28: 325–332.

    Article  Google Scholar 

  • Goodwin, T. W. 1952. Fungal carotenoids. Bot. Rev.18: 291–316.

    Article  CAS  Google Scholar 

  • Goodwin, W. T. 1971. Aspects of Terpenoid Chemistry and Biochemistry. Academic Press, New York.

    Google Scholar 

  • Götz, P. 1944. Der stand des ozone problem. Vierteljahrsschr. Naturforsch. Ges. Zürich.89: 260–264.

    Google Scholar 

  • Götz, F. W. P. and P. Casparis. 1943. Photographie des ultravioletten sonnenspectralendes. Chem. Zentbl. 1644.

  • Graham, R. J. D. andL. B. Stewart. 1930. Experiments with Vita Glass. Trans. Bot. Soc. Edinburgh30: 212–215.

    Google Scholar 

  • Gray, W. O. 1938. The effects of light on the fruiting of myxomycetes. Am. J. Bot.25: 511–522.

    Article  CAS  Google Scholar 

  • Gray, W. D. 1953. Further studies on the fruiting ofPhysarum polycephalum. Mycologia45: 817–824.

    Google Scholar 

  • Graymore, C. N. 1965. Biochemistry of the Retina. Academic Press, N.Y.

    Google Scholar 

  • Green, A. E. S. 1966. The middle ultraviolet: Its science and technology. John Wiley and Sons. N.Y.

    Google Scholar 

  • —,T. Sawada, andE. P. Shettle. 1974. The middle ultraviolet reaching the ground. Photochem. Photobiol.19: 251–259.

    Article  CAS  Google Scholar 

  • Green, J. R. 1897. Action of light on diastase and its biological significance. Phil. Trans. Roy. Soc. London B188: 167–190.

    Article  Google Scholar 

  • Gressel, J. B. andK. M. Hartmann. 1968. Morphogenesis inTrichoderma: Action spectrum of photoinduced sporulation. Planta79: 271–274.

    Article  Google Scholar 

  • Griffin, H. C., V. S. Dolman, E. B. Bohlke, P. Bouvart, andE. L. Tatum. 1955. The effect of visible light on the carcinogenicity of ultraviolet light. Cancer Res.15: 523–528.

    PubMed  CAS  Google Scholar 

  • Groenwald, E. G., P. Lee, andJ. A. D. Zeevaart. 1967. Radiations and other physical factors and their action mechanisms. Michigan State Univ. AEC Plant Research Lab. Report1967: 25–26.

    Google Scholar 

  • Grossman, M. 1931. 3 Jahre Kakteen im ultravioletten Licht. Monatschr. Deutsch Kakteen-Gesellschaft3: 145–148.

    Google Scholar 

  • Grossweiner, L. I. 1969. Molecular mechanisms in photodynamic action. Photochem. Photobiol.10: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Guelin, A. 1942. Action des rayons lumineux sur le bactériophage. Ann. Inst. Pasteur68: 245–248.

    Google Scholar 

  • Guillemin, C. M. 1857. Production de la chlorophylle et direction des tiges sous l’influence des rayons ultra-violets, calorifiques et lumineux du spectra solaire. Ann. Sci. Natur. IV section Botany7: 154.

    Google Scholar 

  • Guthrie, J. D. 1929. Effect of environmental conditions on the chloroplast pigments. Am. J. Bot.16: 716–746.

    Article  CAS  Google Scholar 

  • H. 1927. Ultra-violet light and horticulture. Gard. Chron.81: 52.

    Google Scholar 

  • Habermann, H. M. 1961. Isolation and function of several newly discovered water-soluble pigments from leaves. pp. 576–580. In: B. C. Christensen and B. Buchmann (eds.). Progress in Photobiology. Elsevier, N.Y.

    Google Scholar 

  • —. 1966. Light-inhibited leaf development in a white mutant: Resemblance to effects of 2-thiouracil in normally pigmentedHelianthus annuus. Physiol. Plant.19: 122–127.

    Article  Google Scholar 

  • Hadwiger, L. A. andM. E. Schwochau. 1971. Ultraviolet light-induced formation of pisatin and phenylalanine ammonia lyase. Plant Physiol.47: 588–590.

    Article  PubMed  CAS  Google Scholar 

  • Hager, A. 1970. Ausbildung von Maxima im absorptionsspektrum von Carotinoiden in Bereich um 370 nm; folgen für die interpretation bestimmtes Werkungsspektren. Planta91: 38–53.

    Article  CAS  Google Scholar 

  • Hallaender, A. 1943. Effect of long ultraviolet and short visible radiation (3500–4900 A) onEscherichia coli. J. Bact.46: 531–541.

    Google Scholar 

  • Halldal, P. 1961. Ultraviolet action spectra of positive and negative phototaxis inPlatymonas subcordiformes. Physiol. Plant.14: 133–139.

    Article  CAS  Google Scholar 

  • —. 1964. Ultraviolet action spectra of photosynthesis and photosynthetic inhibition in a green and a red alga. Physiol. Plant.17: 414–421.

    Article  Google Scholar 

  • —. 1967. Ultraviolet action spectra in algology. A review. Photochem. Photobiol.6: 445–460.

    Article  CAS  Google Scholar 

  • — andO. Taube. 1972. Ultraviolet action and photoreactivation in algae. Photobiology7: 163–188.

    Google Scholar 

  • Hanawalt, P. C. 1968. Cellular recovery from photochemical damage. Photophysiology4: 204–252.

    Google Scholar 

  • Hand, I. F. 1941. Summary of total solar and sky radiation measurements in the United States. U.S. Dept. Commerce Monthly Weather Rev.69: 95–125.

    Article  Google Scholar 

  • Hansen, K. G. 1969. Transmission through skin of ultraviolet and visible radiation 280–500 nm. pp. 159–163. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Hansen, J. R. andK. P. Buchholtz. 1952. Inactivation of 2, 4-D by riboflavin in light. Weeds1: 237–242.

    Article  CAS  Google Scholar 

  • Harm, W. 1969. Biological determination of the germicidal activity of sunlight. Rad. Res.40: 63–69.

    Article  CAS  Google Scholar 

  • Harm, H. andC. S. Rupert. 1976. Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. XI. Light-induced activation of the yeast photoreactivating enzyme. Mutation Res.34: 75–92.

    PubMed  CAS  Google Scholar 

  • Harm, W., C. S. Rupert, andH. Harm. 1971. The study of photoenzymatic repair of UV lesions in DNA by flash photolysis. Photophysiology6: 279–324.

    CAS  Google Scholar 

  • Hartmann, K. M. 1966. A general hypothesis to interpet ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol.5: 349–366.

    Article  CAS  Google Scholar 

  • Hasselbalch, K. A. 1911. Quantitative Untersuchungen über die absorption der menschlichen Haut von ultravioletten Strahlen. Skandinav. Arch. Physiol.25: 55–68.

    CAS  Google Scholar 

  • Hattori, A. andY. Fujita. 1959. Spectroscopic studies on the phycobilin pigments obtained from blue-green and red algae. J. Biochem. (Japan)46: 903–909.

    CAS  Google Scholar 

  • Haupt, W. 1965. Perception of environmental stimuli orienting growth and movement in lower plants. Annu. Rev. Plant Physiol.16: 267–290.

    Article  CAS  Google Scholar 

  • —. 1966. Phototaxis in plants. Int. Rev. Cytol.19: 267–299.

    Article  PubMed  CAS  Google Scholar 

  • —. 1973. Role of light in chloroplast movement. BioScience23: 289–296.

    Article  Google Scholar 

  • — andM. Kraml. 1966. Wechselwirkung Kurzwelliger und langwelliger Strahlung bei der Photomorphogenesis vonPisum undSinapis. Naturwissenschaften53: 616.

    Article  PubMed  CAS  Google Scholar 

  • — andI. Schonfeld. 1963. Die Wirkung von Kurzwelliger Strahlung auf die Schwachlichtbewegung des Mougeotia-chloroplasten. Zeit Bot.51: 17–31.

    CAS  Google Scholar 

  • —,F. Mugele, andE. Schonböhm. 1964. Die Beeinflussung des Phytochromsystems durch Kurzwellige Strahlung. Naturwissenschaften51: 467–468.

    Article  Google Scholar 

  • Haury, J. F. andL. Bogorad. 1974. Action spectra studies of complementary chromatic adaptations inFremyella diplosiphon. Plant Physiol. (abstr.)53: 46.

    Google Scholar 

  • Hausser, K. W. andW. Vahle. 1969. Sunburn and suntanning. pp. 3–21. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Hecht, W., W. Himmelbaur, andW. Koch. 1931. Versuche über den Einfluss der höhenlage auf ertrag und gehalt einiger Arzneipflanzen. Heil. und Gewurzpflanzen14: 121–149.

    Google Scholar 

  • Heckel, E. 1883. Sur l’intensité du colorés et les dimensions considérables des fleurs aux hautes altitudes. Bull. Soc. Bot. France30: 144–154.

    Google Scholar 

  • Heinmetz, F. andW. W. Taylor, Jr. 1951. Photobiological studies onEscherichia coli at low temperatures. J. Bact.62: 477–485.

    Google Scholar 

  • Helene, C. andM. Charlier. 1971. Photosensitized splitting of pyrimidine dimers by indole derivatives. Biochem. Biophys. Res. Comm.43: 252–257.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, S. T. 1968. Artificial daylight sources. Trans. Illum. Eng. Soc. London33: 83–97.

    Google Scholar 

  • — andD. Hodgkiss. 1963. The spectral energy distribution of daylight. Brit. J. Appl. Phys.14: 125–131.

    Article  Google Scholar 

  • Henschke, U. andR. Schulze. 1934. Untersuchungen zum Problem der Ultraviolett-Dosimetre.III. Über Pigmentierung durch langwelliges Ultraviolett. Strahlentherapie64: 14–42.

    Google Scholar 

  • Herold, H. 1929. Versuche mit ultraviolett-durchlassigem Glas. Gartenwelt33: 229–230.

    Google Scholar 

  • Herrmann, R. 1947. Integrierende Strahlungsmessungen mit Hilfe von Monochromatoren. Optik2: 384–395.

    Google Scholar 

  • Hess, W. M., E. K. Vaughan, andC. M. Leach. 1964. Use of ultraviolet-induced sporulation for identification ofPyrenochaeta terrestris. Phytopathology54: 113.

    Google Scholar 

  • Hibben, S. G. 1924. Influence of colored light on plant growth. Trans. Ilium. Eng. Soc.19: 1000–1010.

    Google Scholar 

  • Higgins, G. M. andC. Sheard. 1927. Germination and growth of seeds as dependent upon selective irradiation. Plant Physiol.2: 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrant, A. C. andI. K. Vasil. 1966. Variations of morphogenetic behavior in plant tissue cultures. I.Cichorium endivia. Amer. J. Bot.53: 860–866.

    Article  Google Scholar 

  • Hill, R. F. 1956. Effects of illumination on plaque formation byEscherichia coli infected with T1 bacteriophage. J. Bact.71: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Himmelfarb, P., A. Scott, andP. S. Thayer. 1970. Bactericidal activity of a broad-spectrum illumination source. Appl. Microbiol.19: 1013–1014.

    PubMed  CAS  Google Scholar 

  • Hirt, R. C., R. G. Schmitt, N. D. Searle, andH. P. Sullivan. 1960. Ultraviolet spectral energy distributions of natural sunlight and accelerated test light sources. J. Opt. Soc. Amer.50: 706–713.

    Article  CAS  Google Scholar 

  • Hollaender, A. andC. W. Emmons. 1946. Induced mutations and speciation in fungi. Cold Spr. Harbor Symp. Quant. Biol.11: 78–84.

    CAS  Google Scholar 

  • —,C. P. Swanson, andI. Posner. 1946. The sun as a source of mutationproducing radiation. Am. J. Bot.33: 830.

    Google Scholar 

  • Honda, Y., M. Sakamoto, andY. Oda. 1968. Blue and near ultraviolet reversible photoreaction on the sporulation ofHelminthosporium oryzae. Plant Cell Physiol.9: 603–607.

    Google Scholar 

  • Horovitz, A. andY. Cohen. 1972. Ultraviolet reflectance characteristics in flowers of crucifers. Am. J. Bot.59: 706–713.

    Article  Google Scholar 

  • Howes, C. D. andP. O. Batra. 1970. Mechanism of photoinduced carotenoid synthesis. Further studies on the action spectrum and other aspects of carotenogenesis. Arch. Biochem. Biophys.137: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, J., P. D. Forbes, L. C. Harber, andE. Lakow. 1975. Induction of skin tumors in hairless mice by a single exposure to UV radiation. Photochem. Photobiol.21: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. W. andM. P. Gordon. 1973. Formation of cyclobutane-type dimers in RNA by sunlight. J. Rad. Biol.23: 527–529.

    Article  CAS  Google Scholar 

  • Hubbard, R. andG. Wald. 1952. Cis-trans isomers of Vitamin A and retinene in the rhodopsin system. J. Gen. Physiol.36: 269–313.

    Article  PubMed  CAS  Google Scholar 

  • Hug, D. H. andD. Roth. 1971. Photoactivation of urocanase inPseudomonas putida. Purification of inactive enzyme. Biochemistry10: 1397–1401.

    Article  PubMed  CAS  Google Scholar 

  • Hügi, E. 1942. Strahlenbiologische Versuche anVicia faba in verschiedenen Beriechten des UV. Diss. Univ. Bern. Schweiz.

  • Hurter, J., M. P. Gordon, J. P. Kerwan, andA. D. McLaren. 1974. In vitro photoreactivation of ultraviolet-inactivated ribonucleic acid from tobacco mosaic virus. Photochem. Photobiol.19: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, A. H. andD. Newton. 1930. The specific effects of monochromatic light on the growth of yeast. Can. J. Res.2: 249–263.

    Google Scholar 

  • Igali, S. and R. C. von Borstel. July 1974. Lethal and mutagenic action of 8-methoxy psoralen with near-ultraviolet light onSaccharomyces cerevisea. 2nd Mtg. Am. Soc. Photobiol.

  • Ikenaga, M., S. Kondo, andT. Fujii. 1974. Action spectrum for enzymatic photoreactivation in maize. Photochem. Photobiol.19: 109–113.

    Article  CAS  Google Scholar 

  • Inoue, Y. andM. Furuya. 1974. Perithecial formation inGelasinospora reticulispora. II. Promotive effects of near-ultraviolet and blue light after dark incubation. Plant Cell Physiol.15: 194–204.

    Google Scholar 

  • ——. 1975. Perithecial formation inGelasinospora reticulispora. IV. Action spectrum for the photoinduction. Plant Physiol.55: 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  • Ippen, H. 1969. Topical agents for protection against ultraviolet radiation. pp. 681–687. In: F. Urbach (ed.). Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Isaac, I. andG. H. Abraham. 1959. Saltation and zonation formation inVerticillium lateritium. Am. J. Bot.37: 801–814.

    Google Scholar 

  • Ive, F. A., I. A. Magnus, R. P. Watin, andE. W. Jones. 1969. “Actinic reticuloid”; A chronic dermatosis associated with severe photosensitivity and the biological resemblance to lymphoma. Brit. J. Derm.81: 469–485.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R. S. 1972. Environmental factors regulating the production of conidia by sclerotia ofBotrytis convulta. Can. J. Bot.50: 869–875.

    Article  Google Scholar 

  • Jackson, W. A. andR. J. Volk. 1970. Photorespiration. Annu. Rev. Plant Physiol.21: 385–432.

    Article  CAS  Google Scholar 

  • Jacobi, G. 1928. Untersuchungen über die Wirkung des ultravioletten Lichtes auf Keimung und Wachstum. Beitr. Biol. Pflanzen16: 405–464.

    Google Scholar 

  • Jacobson, F. W. andN. Mellott. 1953. Phenolases and melanogenesis in the coelomic fluid of the echenoidDiadema antillarum Philippi. Proc. Roy. Soc. London B141: 231–247.

    Article  CAS  Google Scholar 

  • Jacquez, J. A., H. F. Kuppenheini, J. M. Dimitroff, A. McKeehan, andJ. Huss. 1955a. Spectral reflectance of human skin in the region 235–700 nm. J. Appl. Physiol.8: 212–214.

    PubMed  CAS  Google Scholar 

  • ——. 1955b. Spectral reflectance of human skin in the region 235–1000 nm. J. Appl. Physiol.7: 523–528.

    PubMed  CAS  Google Scholar 

  • Jagger, J. 1958. Photoreactivation. Bact. Rev.22: 99–142.

    PubMed  CAS  Google Scholar 

  • —. 1960. Photoprotection from ultraviolet killing inEscherichia coli B. Rad. Res.13: 521–539.

    Article  CAS  Google Scholar 

  • —. 1961. A small and inexpensive ultraviolet dose-rate meter useful in biological experiments. Rad. Res.14: 394–403.

    Article  CAS  Google Scholar 

  • —. 1964. Photoprotection from far ultraviolet effects in cells. Adv. Chem. Phys.7: 584–601.

    Article  CAS  Google Scholar 

  • —. 1964. Photoreactivation. pp. 252–377. In: A Hollaender (ed.). Radiation Protection and Recovery. Pergamon Press, N.Y.

    Google Scholar 

  • —. 1967. Introduction to Research in Ultraviolet Photobiology. Prentice-Hall Publ. Co., Englewood Cliffs, N.J.

    Google Scholar 

  • —. 1972. Growth delay and photoprotection induced by near-ultraviolet light. pp. 383–401. In: U. Gallo and L. Santamaria (eds.). Research Progress in Organic, Biological and Medicinal Chemistry, Vol. 3. North Holland Publ. Co., Amsterdam.

    Google Scholar 

  • —. 1975. Inhibition by sunlight of the growth ofEscherichia coli B/r. Photochem. Photobiol.22: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • — andR. S. Stafford. 1962. Biological and physical ranges of photoprotection from ultraviolet damage in micro-organisms. Photochem. Photobiol.1: 245–257.

    Article  CAS  Google Scholar 

  • ——. 1965. Evidence for two mechanisms of photoreactivation inEscherichia coli B. Biophys. J.5: 75–88.

    Article  PubMed  CAS  Google Scholar 

  • —,D. M. Prescott, andM. E. Gaulden. 1969. An ultraviolet microbeam study of the roles of nucleus and cytoplasm in division delay, killing and photoreactivation ofAmoeba proteus. Exp. Cell. Res.58: 35–54.

    Article  PubMed  CAS  Google Scholar 

  • —,W. C. Wise, andR. S. Stafford. 1964. Delay in growth and division induced by near ultraviolet radiation inEscherichia coli B and its role in photoprotection and liquid holding recovery. Photochem. Photobiol.3: 11–24.

    Article  Google Scholar 

  • Jerlov, N. G. 1953. Influence of suspended and dissolved matter on the transparence of sea water. Tellus5: 59–65.

    Article  Google Scholar 

  • —. 1968. Optical Oceanography. Elsevier Publ. Co., N.Y.

    Google Scholar 

  • Jerebzoff, S. and R. Jacques. Equal quanta spectra for the effect of light on the growth of conidiophores and for the induction of a circadian rhythm of zonation inSclerotinia fructicola (Went.) Rehm. Plant Physiol.50: 187–190.

  • Jillson, O. F. 1964. The persistent light reactors. Dermatol. Digest3: 59–67.

    Google Scholar 

  • Johns, H. E. andA. M. Rauth. 1965. Theory and design of high intensity U.V. monochromators for photobiology and photochemistry. Photochem. Photobiol.4: 673–692.

    Article  CAS  Google Scholar 

  • Johnson, F. H. 1932. Effects of electromagnetic waves on fungi. Phytopathology22: 277–300.

    CAS  Google Scholar 

  • Johnson, P. G., A. P. Bell, andD. B. McCormick. 1975. Flavin-sensitized photooxidation of histidine. Photochem. Photobiol.21: 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. E., F. Daniels, Jr., andI. A. Magnus. 1968. Response of human skin to ultraviolet light. Photophysiology4: 139–202.

    CAS  Google Scholar 

  • Jones, M. F. andA. Hallaender. 1944. Effects of long ultraviolet and near visible radiation on the eggs of the nematodesEnterobius vermicularis andAscaris lumbracoides. J. Parasitol.30: 26–33.

    Article  Google Scholar 

  • Josefsson, J.-O. and S. E. Hansson. Effects of ultraviolet radiation on pinocytosis inAmoeba proteus. Acta Physiol. Scand.96: 456–470.

  • Junttila, O. 1976. Allelopathic inhibitors in seeds ofHeracleum laciniatum. Physiol. Plant.36: 374–378.

    Article  CAS  Google Scholar 

  • Kacharova, N. F. 1966. Ultraviolet climate under conditions of Tibilisi and Bakuriani. (In Russian.) Nauk SSSR. Srobshch. Graz SSSR44: 433–436.

    Google Scholar 

  • Kache, P. 1928. Ultraviolette Strahlen as Hilfsmittel im Gartenbau. Gartenzeitung Oesterr. Gartenbau Ges. Wein9: 129.

    Google Scholar 

  • Kamin, H. (ed.). 1971. Flavins and flavoproteins. Proc. 3rd Int’l Symposium. Univ. Park Press, Durham, N.C.

    Google Scholar 

  • Kämpfe, J. 1930. Sammlings anzucht unter verschiedenen Glasarten. Monotsch. Deutsch Kakteen-Ges. Volume 3.

  • Kaplan R. 1948. Auslösung von Mutationen durch sichtbares Licht im vitalgefarbstenBacterium prodigiosum. Naturwissenschaften35: 127.

    Article  Google Scholar 

  • Kaplan, R. W. andC. Kaplan. 1956. Influence of water content on UV-induced S-mutation and killing inSerratia. Exp. Cell Res.11: 378–392.

    Article  PubMed  CAS  Google Scholar 

  • Kashket, E. R. andA. F. Brodie. 1960. Subcellular distribution of a biologically active naphthoquinone inMycobacterium phlei. Biochem. Biophys. Acta40: 550–552.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1962. Effects of near-ultraviolet irradiation as growth and oxidative metabolism of bacteria. J. Bact.83: 1094–1100.

    PubMed  CAS  Google Scholar 

  • ——. 1963. Oxidative phosphorylation in fractionated bacterial systems. X. Different roles for the natural quinones ofEscherichia coli W in oxidative metabolism. J. Biol. Chem.238: 2564–2570.

    Google Scholar 

  • Kasperbauer, M. J. andW. E. Loomis. 1965. Inhibition of flowering by natural daylight on an inbred onMelilotus. Crop Sci.5: 193–194.

    Article  Google Scholar 

  • Keiner, A. 1949. Effect of visible light on the recovery ofStreptomyces griseus conidia from ultraviolet irradiation injury. Proc. Natl. Acad. Sci. (U.S.)35: 73–79.

    Article  Google Scholar 

  • -and S. Halle. 1967. Mutagenesis by visible light in a mutable strain ofEscherichia coli. Bacti. Proc, p. 67.

  • Kendrick, R. E. andB. Frankland. 1969. Photocontrol of germination inAmaranthus caudatas. Planta85: 326–339.

    Article  CAS  Google Scholar 

  • Kennedy, D. 1964. The photoreceptor process in lower animals. Photophysiology2: 79–121.

    Google Scholar 

  • Kerner, A. J. von. 1896. Pflanzenleben. Leipzig.

  • Kerner, W. von. 1894. The natural history of plants. London.

  • Kevan, P. G. 1972. Floral colors in the high arctic with reference to insectflower relations and pollination. Can. J. Bot.50: 2289–2316.

    Article  Google Scholar 

  • Kidder, R. W., D. W. Beardsley, and T. C. Erwin. 1961. Photosensitization in cattle grazing frosted common Bermudagrass (Cynodon dactylon). Fla. Agr. Expt. Sta. Bull. 630.

  • Kimball, H. H. 1924. Records of total solar radiation intensity and their relation to daylight intensity. Monthly Weather Rev.52: 473–479.

    Article  Google Scholar 

  • King, M. C. andD. DeVault. 1976. Carotenoid triplet state inR. spheroides GA chromatophores. Photochem. Photobiol.24: 87–91.

    Article  Google Scholar 

  • Kinsey, V. E. 1948. Spectral transmission of the eye to ultraviolet radiation. Arch. Ophthal (Chicago)39: 508–13.

    CAS  Google Scholar 

  • Kirby-Smith, J. C. andD. L. Craig. 1957. The induction of chromosome aberrations inTradescantia by ultraviolet radiation. Genetics42: 176–187.

    PubMed  CAS  Google Scholar 

  • Kitamoto, Y., A. Buzuki, andS. Furukawa. 1972. An action spectrum for light-induced primordium formation in a basidiomycete,Favolus arcularius (Fr.) Ames. Plant Physiol.49: 338–340.

    Article  CAS  Google Scholar 

  • Klein, G. 1928. Zur Frage der Verwendung von ultraviolettdurchlassigen Gläsern in der Gärtnerei. Gartenzeit Oesterr. Gartenbau Ges. Wein9: 133–134.

    Google Scholar 

  • Klein, R. M. 1963. Interaction of ultraviolet and visible radiations of the growth of cell aggregates ofGinkgo pollen tissue. Physiol. Plant.16: 73–81.

    Article  Google Scholar 

  • —. 1964. Repression of tissue culture growth by visible and near visible radiation. Plant Physiol.39: 536–539.

    Article  PubMed  CAS  Google Scholar 

  • — andA. Cronquist. 1967. A consideration of the evolutionary and taxonomic significance of some biochemical, micromorphological, and physiological characters in the Thallophytes. Quart. Rev. Biol.42: 105–296.

    PubMed  CAS  Google Scholar 

  • — andP. C. Edsall. 1967. Interference by near ultraviolet and green light with growth of animal and plant cell cultures. Photochem. Photobiol.6: 841–850.

    Article  PubMed  CAS  Google Scholar 

  • — andD. T. Klein. 1971. Post-irradiation modulation of ionizing radiation damage to plants. Bot. Rev.37: 397–436.

    Article  CAS  Google Scholar 

  • — andJ. Wansor. 1963. Effects of non-ionizing radiation on expansion of disks from leaves of dark-grown bean plants. Plant Physiol.38: 5–10.

    Article  PubMed  CAS  Google Scholar 

  • —,P. C. Edsall, andA. C. Gentile. 1965. Effects of near ultraviolet and green radiations on plant growth. Plant Physiol.40: 903–906.

    Article  PubMed  CAS  Google Scholar 

  • Klemm, E. andH. Ninnemann. 1976. Detailed action spectrum for the delay shift in pupae emergence ofDrosophila pseudoobscur a. Photochem. Photobiol.24: 369–371.

    Article  Google Scholar 

  • Knapp, E., A. Reuss, O. Risse, andH. Schreiber. 1939. Quantitative analyse der mutationsauslosendenwirkung monochromatische UV-Lichtes. Naturwissenschaften27: 304.

    Article  CAS  Google Scholar 

  • Knook, D. L. andR. J. Plant. 1971. Function of ubiquinone in electron transport from reduced nicotinamide adenine dinucleotide to nitrate and oxygen inAerobacter aerogenes. J. Bact.105: 483–488.

    PubMed  CAS  Google Scholar 

  • Knox, J. M., A. C. Griffin, andR. E. Hakim. 1960. Effect of chloroquine on erythematous and carcinogenic response to ultraviolet light. Am. Med. Assoc. Arch Dermat.81: 570–576.

    CAS  Google Scholar 

  • —,G. Guin, andE. G. Cockerell. 1957. Benzophenones. Ultraviolet light absorbing agents. I. Invest. Derm.29: 435–444.

    Article  CAS  Google Scholar 

  • Knuth, P. 1891. Die Einwirkung der Blutenfarben auf die photographische Platte. Bot. Centralbl.48: 160–165.

    Google Scholar 

  • Kohl, F. G. 1895. Über assimilationsenergie und Spaltöffnungsmechanik. Bot. Centralbl.64: 109–110.

    Google Scholar 

  • Kohn, H. andK. von Freystein. 1932. Ein Christiansen filter für ultraviolette Strahling. Physik. Zeit.33: 929–931.

    CAS  Google Scholar 

  • Koller, L. R. 1965. Ultraviolet Radiation. John Wiley and Sons, N.Y.

    Google Scholar 

  • Kondo, S. andJ. Jagger. 1966. Action spectrum for photoreactivation of mutation to prototrophy in strains ofEscherichia coli possessing and lacking photoreactivating-enzyme activity. Photochem. Photobiol.5: 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Kowallik, W. 1965. Wachstumshemmung vonPrototheca im licht. Flora. Abt. A.156: 231–235.

    Google Scholar 

  • —. 1967. Action spectrum for an enhancement of endogenous respiration by light inChlorella. Plant Physiol.42: 672–676.

    Article  PubMed  CAS  Google Scholar 

  • Kozlovka, K. I. 1957. Experiment of spectrophotometric investigation of the reflection by plants of close ultraviolet rays (in Russian). Trans. Secotra Astrobotan. Akad. Nauk Kaz SSR.1957 (5) 110–117 (cf. Biol. Abstr. 35: 24889. 1958).

    Google Scholar 

  • Kraml, M. 1971. Die Wirkung kurzweligen Lichtes auf Phytochromreaktionen vonPisum undSinapsis. Zeit. Pflanzenphysiol.65: 97–117.

    Google Scholar 

  • Kraus, G. 1872. Zur Kenntnis der Chlorophyllfarbstoffe und ihre Verwandten. Stuttgart.

  • Krinsky, N. I. 1968. The protective function of carotenoid pigments. Photophysiology3: 123–195.

    CAS  Google Scholar 

  • KrishnaMurti, C. R. andA. F. Brodie. 1968. New light-sensitive cofactor required for oxidation of succinate byMycobacterium phlei. Science164: 302–304.

    Article  Google Scholar 

  • Krizek, D. T. 1975. Influence of ultraviolet radiation on germination and early seedling growth. Physiol. Plant.34: 182–186.

    Article  Google Scholar 

  • Kubitschek, H. E. 1967. Mutagenesis by near-visible light. Science155: 1545–1546.

    Article  PubMed  CAS  Google Scholar 

  • -,S. L. Nance, and R. J. Doyle. 1975. Induction of growth delay by inactivation of membrane transport after exposure to near-UV. 3rd Mtg. Am. Soc. Photobiol.

  • Kuck, J. F. R., Jr. 1976. Effect of long-wave ultraviolet light on the lens. I. Model systems for detecting and measuring effect on the lens in vitro. Invest. Ophthal.15: 405–407.

    PubMed  CAS  Google Scholar 

  • Kumagai, T. andY. Oda. 1969. Blue and near ultraviolet reversible photoreaction in conidial development of the fungus,Alternaria tomato. Development, Growth and Differentiation11: 130–142.

    Article  PubMed  CAS  Google Scholar 

  • Kurup, C. K. R. andA. F. Brodie. 1966. Oxidative phosphorylation in fractionated bacterial systems. XXII. The effect of near ultraviolet irradiation on the succinate oxidase pathway ofMycobacterium phlei. J. Biol. Chem.241: 4016–4072.

    PubMed  CAS  Google Scholar 

  • Lackman, I. 1971. Wirkungsspektren der anthocyansynthese in Gewebekulturen und Keimlingen vonHaplopappus gracilis. Planta98: 258–269.

    Article  Google Scholar 

  • Lakchaura, B. D. 1972. Photoprotection from killing in ultraviolet-sensitiveEscherichia coli K-12 mutants: involvement of excessive resynthesis repair. Photochem. Photobiol.16: 197–202.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. Jagger. 1972. Induction by cyanide, dinitrophenol and trinitrophenol of growth inhibition and of recovery from far-ultraviolet killing inEscherichia coli B: Relationship to photoprotection. Rad. Res.49: 631–646.

    Article  CAS  Google Scholar 

  • —,T. Fossum, andJ. Jagger. 1976. Inactivation of adenosine 5′-triphosphate synthesis and reduced-form nicotinamide adenine dinucleotide dehydrogenase activity inEscherichia coli by near-ultraviolet and violet radiations. J. Bact.125: 111–118.

    PubMed  CAS  Google Scholar 

  • Lamb, J. H., B. Shelmire, Z. Cooper, R. J. Morgan, andC. Keaty. 1950. Solar dermatitis. Arch. Derm. Syph.62: 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht, H. 1929. Die Bedeutung der Ultravioletten Sonenstrahlen für die Enwicklung einiger Pflanzen. Bot. Not. 311–340.

  • Landa, F. andA. Eisenstark. 1973. Tryptophan photoproduct effects on genetic recombination in bacteria. 1st Mtg. Am. Soc. Photobiol. Sarasota, Fla.

    Google Scholar 

  • Lang-Feulner, J. andW. Rau. 1975. Redox dyes as artificial photoreceptors in light-dependent carotenoid synthesis. Photochem. Photobiol.21: 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Larbach, F. andF. Maschmann. 1933. Über den Wuchsstoffe der orchedeenpollinien. Jahrb. Wiss. Bot.78: 339–430.

    Google Scholar 

  • Laurent, E. 1889. Influence de la lumière sur les spores du charbon des céréales. Compte Rend. Soc. Roy. Bot. Belgique28: 162–164.

    Google Scholar 

  • Lautenschlager-Fleury, D. 1955. Über die ultraviolett-durchlässigkeit von blattepidermen. Ber. Schwiez Bot. Ges.65: 343–386.

    CAS  Google Scholar 

  • Leach, C. M. 1961. The sporulation ofHelminthosporium oryzae as affected by exposure to near ultraviolet radiation and dark periods. Can. J. Bot.39: 705–715.

    Article  Google Scholar 

  • —. 1962a. Sporulation of diverse species of fungi under near-ultraviolet radiation. Can. J. Bot.40: 151–161.

    Article  Google Scholar 

  • —. 1962b. The quantitative and qualitative relationship of ultraviolet and visible radiation to the induction of reproduction inAscochyta pisi. Can. J. Bot.40: 1577–1602.

    Article  Google Scholar 

  • —. 1963. The qualitative and quantitative relationship of monochromatic radiation to sexual and asexual reproduction ofPleospora herbarum. Mycologia55: 151–163.

    Article  Google Scholar 

  • —. 1964. The relationship of visible and ultraviolet light to sporulation ofAlternaria chrysanthemi. Trans. Brit. Mycol. Soc.47: 153–158.

    Article  Google Scholar 

  • —. 1965a. Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Canad. J. Bot.43: 185–200.

    Article  CAS  Google Scholar 

  • —. 1965b. Detection of ultraviolet absorbing substances in living mycelium of fungi. Mycologia57: 291–300.

    Article  CAS  Google Scholar 

  • —. 1967. The light factor in the detection and identification of seed-borne fungi. Proc. Int. Seed Test Assoc.32: 565–589.

    Google Scholar 

  • —. 1967. Interaction of near-ultraviolet light and temperature on sporulation of the fungiAlternaria cercosporella, Fusarium, Helminthosporium, andStemphylium. Can. J. Bot.45: 1999–2016.

    Article  Google Scholar 

  • —. 1968. An action spectrum for light inhibition of the “terminal phase” of photosporogenesis in the fungusStemphylium botryosum. Mycologia60: 532–546.

    Article  Google Scholar 

  • —. 1971. A practical guide to the effects of visible and ultraviolet radiation on fungi. pp. 609–664. In: C. Booth (ed.). Methods in Microbiology IV. Academic Press, N.Y.

    Chapter  Google Scholar 

  • — andE. J. Trione. 1965. An action spectrum for light induced sporulation in the fungusAscochyta pisi. Plant Physiol.40: 808–812.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1966. Action spectra for light-induced sporulation of the fungiPleospora herbarum andAlternaria dauci. Photochem. Photobiol.5: 621–630.

    Article  CAS  Google Scholar 

  • Lee, D. 1969. Photolysis in a culture medium forTetrahymena pyriformes. J. Cell. Physiol.74: 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, H. 1965. Untersuchungen über die Typhla-Fäuledes Getreides. I. Zur Physiologic vonTyphla incarnata Larch ex Fr. Phytopath. Zeit.53: 255–288.

    Article  Google Scholar 

  • Lenoble, J. 1956. L’absorption du rayonnement ultraviolet par lésions présents dans la mer. Rev. D’Optique35: 526–530.

    Google Scholar 

  • —. 1957. Penetration of ultraviolet radiation into the oceans. Proc. 2nd Intl. Cong. Photobiol. (Turin)4: 2.

    Google Scholar 

  • Leonard, C. S. andJ. M. Arthur. 1934. The reputed influence of ultra-violet light on the yield ofDigitalis purpurea. J. Am. Pharm. Assoc.23: 225–228.

    Google Scholar 

  • Leonard, N. J., D. E. Bergstrom, andG. L. Tolman. 1971. Photoproducts from 4-thiouracil and cytosine and from 4-thiouridine and cytidine: refinement of tertiary tRNA structure. Biochem. Biophys. Res. Comm.44: 1524–1530.

    Article  PubMed  CAS  Google Scholar 

  • Lepeschkin, W. W. Light on the permeability of protoplasm. Am. J. Bot.12: 953–970.

  • —. 1932. Influence of visible and ultraviolet rays on the stability of protoplasm. Am. J. Bot.19: 547–558.

    Article  Google Scholar 

  • Levring, T. 1947. Submarine daylight and the photosynthesis of marine algae. Göteborgs K. Ventenskapo-och Vitterhets-Samhäll Handl.5: 1.

    Google Scholar 

  • Lewis, S. C., J. H. Schiff, andH. T. Epstein. 1961. Photooxidation of cytochromes by a flavoprotein fromEuglena. Biochem. Biophys. Res. Comm.5: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Lewkowitsch, E. 1928. The ultraviolet absorption spectrum of chlorophyll in alcoholic solution. Biochem. J.22: 777–778.

    PubMed  CAS  Google Scholar 

  • Ley, R. D. andR. B. Setlow. 1972. Repair replication inEscherichia coli as measured by the photolysis of bromodeoxyuridine. Biophys. J.12: 420–430.

    Article  PubMed  CAS  Google Scholar 

  • Lieske, R. 1921. Morphologie und Biologie der Strahlenpilze. Gebrüder Borntraeger. Leipzig.

    Google Scholar 

  • Leith, H. and U. Brodführer. (Unpublished but abstracted in Lockhart, J. and A. Brodführer-Franzgrote.) Über den Einfluss des roten und blauen Spektralbereiches auf die UV-Durchlässigkeit von Blattepidermen.

  • Lipson, E. D. andD. Presti. 1977. Light-induced absorbance changes inPhycomyces mutants. Photochem. Photobiol.25: 203–208.

    Article  Google Scholar 

  • Lipton, W. J. September 1975. UV radiation as a factor in solar injury and vein tract browning of cantaloupes. USDA, ARS, Market Quality and Transportation Res. Lab, Fresno, Calif., 72nd Ann. Mtg. Amer. Soc. Hort. Sci.

  • —. 1977. Ultraviolet radiation as a factor in solar injury and vein tract browning of cantaloupes. J. Am. Soc. Hort. Sci.102: 32–36.

    Google Scholar 

  • Lockhart, J. A. andU. Brodführer-Franzgrote. 1961. The effects of ultraviolet radiation on plants. Handb. Pflanzenphysiol.16: 523–554.

    Google Scholar 

  • Lohr, P. L. 1919. Untersuchungen über die blattanatomie von alpen- und ebenenpflanzen. Thesis Univ. Basel.

    Google Scholar 

  • Lorenzen, C. J. 1972. Extinction of light in the ocean by phytoplankton. J. Cons. Int. Explor. Mer.34: 262–267.

    Google Scholar 

  • Lovring, T. 1947. Submarine daylight and the photosynthesis of marine algae. Gotesborgs K. Vetenskaps. Vitterhuts-Samhäll Handl.5: 1–21.

    Google Scholar 

  • Lozovskaia, L. S. 1959. Destructive action of light on measles and influenza viruses during desiccation and subsequent storage. Prob. Virol.4: 56–59.

    Google Scholar 

  • Lubbock, J. 1888. On the Senses, Instincts and Intelligence of Animals, with Special Reference to Insects. Appleton & Co., N.Y.

    Google Scholar 

  • Luckiesh, M. 1946. Applications of Germicidal, Erythemal and Infrared Energy. Van Nostrand Co. Princeton, N.J.

    Google Scholar 

  • Lukens, R. J. 1963. Photo-inhibition of sporulation inAltemaria solani. Am. J. Bot.50: 720–724.

    Article  CAS  Google Scholar 

  • —. 1965. Reversal by red light of blue light inhibition of sporulation inAltemaria solani. Phytopathology55: 1032.

    Google Scholar 

  • Luntz, A. 1931. Untersuchungen über die Phototoxis. I. Mitteilung: Die absoluten Schwellenwert und die Relative Werksamkeit von spektralfarben bei grünen und Farblosen einzelligen. Zeit. Vergleichende Physiol.14: 68–92.

    Google Scholar 

  • Mackay, D., A. Eisenstark, R. B. Webb, andM. S. Brown. 1976. Action spectra for lethality in recombinationless strains ofSalmonella typhimurium andEscherichia coli. Photochem. Photobiol.24: 337–343.

    Article  PubMed  CAS  Google Scholar 

  • MacMillan, H. G. 1923. Cause of sunscald of beans. Phytopathology13: 376–380.

    Google Scholar 

  • Maddock, O. 1928. Vita glass. Gard. Chron.84: 434.

    Google Scholar 

  • Magnus, I. A. andA. D. Porter. 1959. A case of Urticaria Solaris studied with a monochromator. Brit. J. Dermat.71: 51–60.

    Article  CAS  Google Scholar 

  • —. 1964. Studies with a monochrometer in the common idiopathic photodermatoses. Brit. J. Dermat.76: 245–264.

    Article  CAS  Google Scholar 

  • Marchese, A. L. and A. H. Friedman. 1974. Near UV, visible and near IR effects on the standing potential of the eye and the electro-oculogram and their possible influence on the tonic and/or plastic excitation of the CNS. 2nd Mtg. Am. Photobiol. Soc.

  • Marquez, E. D. andA. F. Brodie. 1970. Electron transport in halophilic bacteria: Involvement of a menaquinone in the reduced nicotinamide adenine dinucleotide oxidative pathway. J. Bact.103: 261–263.

    Google Scholar 

  • Marsh, P. B., E. E. Taylor, and L. M. Bassler. 1959. A guide to the literature on certain effects of light on fungi: Reproduction, morphology, pigmentation, and phototropic phenomena. Plant Disease Reporter Suppl.261.

  • Märtensson, O. andE. Nelsson. 1974. On the morphology of Bryophytes. Lindbergia2: 145–159.

    Google Scholar 

  • Massey, V., S. Strickland, S. G. Mayhew, L. G. Howell, P. C. Engel, R. G. Matthews, M. Schuman, andP. A. Sullivan. 1969. The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem. Biophys. Res. Comm.36: 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Masure, M. P. 1932. Effect of ultraviolet radiation on growth and respiration of pea seeds with notes on statistics. Bot. Gaz.93: 21–41.

    Article  CAS  Google Scholar 

  • Mathews, M. M. 1964. Protective effect of β-carotene against lethal photosensitivity action by haematoporphyrin. Nature203: 1092.

    Article  PubMed  CAS  Google Scholar 

  • Matile, P. andA. Frey-Wyssling. 1962. Atmung und Wachstum von Hefe im Licht. Planta58: 154–163.

    Article  CAS  Google Scholar 

  • Mayer, F. 1964. Lichtorientierte chloroplasten-Verlagerungen bySelaginella martensii. Zeit. Bot.52: 346–381.

    Google Scholar 

  • —. 1966. Lichtinduzierte chloroplasten-Verlagerungen beiSelaginella martensii. Zeit. Pflanzenphysiol.55: 65–70.

    Google Scholar 

  • Maryon, L. W., R. Nations, E. L. Maryon, and J. N. Ott. 1974. Initial studies on the effects of full spectrum lighting and radiation shielding on classroom behavior and scholastic achievement. 2nd Mtg. Am. Photobiol. Soc.

  • McAulay, A. L. 1939. Production of saltants ofChaetomium globosum by monochromatic ultra-violet irradiation. Papers and Proc. Roy. Soc. Tasmania1938: 133–137.

    Google Scholar 

  • —,N. J. B. Plomley, andJ. M. Ford. 1945. Saltants produced in the fungusChaetomium globosum by monochromatic ultra-violet irradiation and a growth effect characteristic of wavelength. Aust. J. Exp. Biol. Med. Sci.23: 53–57.

    Article  Google Scholar 

  • McCormick, D. B., M. C. Falk, F. Rezzuto, andC. Tollin. 1975. Inter- and intramolecular effects of tyrosyl residues on flavin triplets and radicals as investigated by flash photolysis. Photochem. Photobiol.22: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • McCrea, A. 1928. Effect uponDigitalis pupurea of radiation through solarized, ultraviolet-transmitting glass. Am. J. Bot.15: 622.

    Google Scholar 

  • —. 1930. Prolonged effect onDigitalis purpurea of exposure under ultraviolet transmitting glass. Science71: 346.

    Article  PubMed  CAS  Google Scholar 

  • McCree, K. J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol.10: 443–453.

    Article  Google Scholar 

  • — andM. E. Keener. 1974. Effect of atmospheric turbidity on the photosynthetic rates of leaves. Agr. Meteorol.13: 349–351.

    Article  Google Scholar 

  • McLeod, G. C. 1958. Delayed light action spectra of several algae in visible and ultraviolet light. J. Gen. Physiol.42: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. Kanwisher. 1962. The quantum efficiency of photosynthesis in ultraviolet light. Physiol. Plant.15: 581–586.

    Article  CAS  Google Scholar 

  • McLeod, R. A., P. Thurman, andH. J. Rogers. 1973. Comparative transport activity of intact cells, membrane vesicles and mesosomes ofBacillus licheniformis. J. Bact.113: 329–340.

    Google Scholar 

  • Meger, J. 1958. Die photolytischen Abbauprodukte der 3-Indolessigsaure und ihre physiologische Wirkung auf das Wachstum derAvena-Koleoptile. Lect. Bot.46: 125–160.

    Google Scholar 

  • Meier, F. E. 1932. Lethal action of ultra-violet light on a unicellular green alga. Smithsonian Misc. Coll.87(10): 1–15.

    Google Scholar 

  • Mekkelson, D. G., G. W. Fowlks, andD. G. Griffith. 1961. Lethal effects of several common dermatophytic fungi by ultraviolet light after exposure to compounds of the furocoumarin group. Arch. Phys. Med.42: 609–615.

    Google Scholar 

  • Mer, C. L. 1957. A re-examination of the supposed effect of riboflavin on growth. Plant Physiol.32: 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Merkel, J. R. andW. J. Nickerson. 1954. Riboflavin as a photocatalyst and hydrogen carrier in photochemical reduction. Biochim. Biophys. Acta14: 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Metzner, P. 1930. Über das optische Verhalten der Pflanzengewebe im langwelligen ultravioletten Lichtes. Planta10: 281–313.

    Article  Google Scholar 

  • Mezzadrol, G. andE. Vareton. 1929. Azione dei raggi di Wood (circa 3600 Å) sulla germinazione dei semi e sull accrescemento delie planti. Rend. R. Accad. Lincei.10: 281–289.

    Google Scholar 

  • Mikolajczyk, E. andB. Diehn. 1975. The effect of potassium iodide on photophobic responses inEuglena: Evidence for two photoreceptor pigments. Photochem. Photobiol.22: 269–271.

    Article  PubMed  CAS  Google Scholar 

  • Mills, K. S. andA. R. Schrank. 1954. Electrical and curvature responses of theAvena coleoptile to unilateral ultraviolet irradiation. J. Cell. Comp. Physiol.43: 39–55.

    Article  CAS  Google Scholar 

  • Minato, S. andH. Werbin. 1971. Spectral properties of the chromophoric material associated with the deoxyribonucleic acid photoreactivating enzyme isolated from baker’s yeast. Biochemistry10: 4503–4508.

    Article  PubMed  CAS  Google Scholar 

  • Mirande, M. 1922. Sur la formation d’anthocyanine sans l’influence de la lumière dans les écailles des bulbes de certains lis. C. R. Acad. Sci. Paris175: 429–430; 496–498.

    Google Scholar 

  • Mohr, H. 1961. Wirkung Kurzwelligen Lichtes. Hand. Pflanzenphysiologie16: 439–531.

    Google Scholar 

  • Mohr, R. 1973. Lectures on Photomorphogenesis. Springer-Verlag, New York.

    Google Scholar 

  • Mogus, M. A. andJ. J. Wolken. 1974.Phycomyces: electrical response to light stimuli. Plant Physiol.53: 512–513.

    Article  PubMed  CAS  Google Scholar 

  • Monlux, A. W., et al. 1963. Bovine hepatogenous photosensitivity associated with the feeding of alfalfa hay. Amer. Vet. Med. Assoc. J.142(9): 989–994.

    CAS  Google Scholar 

  • Montenay-Garestier, T. 1975. Singlet energy transfer between aromatic amino acids and nucleic acid bases. Theoretical calculations. Photochem. Photobiol.22: 3–6.

    Article  PubMed  CAS  Google Scholar 

  • Montfort, C. 1950. Photochemische Wirkung des Höhenklimas auf die chloroplasten photolabiles Pflanzen im Mittel- und Hochgebirge. Zeit. Naturforsch.5b: 221–226.

    CAS  Google Scholar 

  • Moore, F. D., III. 1970. Some effects of solar radiation intensity and solar ultraviolet radiation on potato, onion and head lettuce plants growing at 7,670 feet. Pacific Division AAAS, June 21, 1970, Berkeley, Calif.

    Google Scholar 

  • Moreno, Y. andE. E. Shell. 1967. The relation of spectral changes and tritium exchange reactions to the mechanism of trytophanase-catalyzed reactions. J. Biol. Chem.242: 2800–2809.

    Google Scholar 

  • Morton, J. J., G. R. Mider, E. M. Luce-Clausen, andE. B. Mahoney. 1951. The effect of visible light on the development in mice of skin tumors and leukemia induced by carcinogens. Cancer Res.11: 559–561.

    PubMed  CAS  Google Scholar 

  • Mulligen, G. A. andP. G. Kevan. 1973. Color, brightness and other floral characteristics attracting insects to the blossoms of some Canadian weeds. Can. J. Bot.51: 1939–1952.

    Article  Google Scholar 

  • Munakata, N., L. Marple, T. T. Meng, andC. S. Rupert. 1974. Action spectra for the killing of UV-sensitive spore ofBacillus subtilis. 2nd Mtg. Am. Photobiol. Soc., Univ. of Texas, Dallas, Texas.

    Google Scholar 

  • Muñoz, V. andW. L. Butler. 1975. Photoreceptor pigment for blue light inNeurospora crassa. Plant Physiol.55: 421–426.

    Article  PubMed  Google Scholar 

  • Muñoz, V., S. Brody, and W. L. Butler. 1974. Photoreceptor pigment for blue light responses inNeurospora crassa. 2nd Mtg. Am. Photobiol. Soc.

  • Murphy, T. M. 1973. Inactivation of TMV-RNA by ultraviolet radiation in sunlight. Intl. J. Rad. Biol.23: 519–526.

    Article  CAS  Google Scholar 

  • Musajo, L. 1969. Biological consequences of the photobinding of furocoumarin molecules with nucleic acids. Ann. Ist. Super. Sanita.5: 376–385.

    CAS  Google Scholar 

  • — andG. Rodighiero. 1972. Mode of photosensitizing action of furocoumarins. Photophysiology7: 115–147.

    PubMed  CAS  Google Scholar 

  • —,G. Rodighieri, G. Columbo, V. Torlone, andF. Dall’acqua. 1965. Photosensitizing furocoumarins: Interaction with DNA and photoinactivation of DNA containing viruses. Experientia21: 22–24.

    Article  PubMed  CAS  Google Scholar 

  • Nachtwey, D. S. July 1974. Strategie of aquatic organisms for coping with solar ultraviolet radiation. 2nd Mtg. Am. Soc. Photobiol.

  • —. 1975. Comparative effects of UV-B and 254 nm UV on the alga,Chlamydomonas reinhardi: Evidence for a qualitative difference. pp. 3–86. In: D. W. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. Transportation. Washington, D.C.

    Google Scholar 

  • -and M. M. Caldwell (eds.). 1975. Impacts of Climatic Change on the Biosphere. U.S. Dept. Transportation. Monograph 5, Parts 1 and 2. Washington, D.C.

  • Nack, M. L. andA. E. S. Green. 1974. Influence of clouds, haze and smog on the middle ultraviolet reaching the ground. Appl. Optics13: 2405–2415.

    Article  CAS  Google Scholar 

  • Nader, J. S. 1969. Pilot study of ultraviolet radiation in Los Angeles. pp. 417–432. In: F. Urbach (ed.). Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Nadson, G. andG. Philippov. 1927. Über die Reizwerkung ultravioletter Strahlen auf das Wachstum von Hefe und Pilzen. Vestnik Roentgenalogii Radiol.5: 425–431.

    Google Scholar 

  • Nair, P. andG. G. Zabka. 1966. Pigmentation and sporulation in selected myxomycetes. Am. J. Bot.53: 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Narinyan, S. G., R. G. Della-Rosa, andV. E. Voskanyan. 1965. On the effect of ultraviolet rays on the growth and contents of pigments of plastids under conditions of the Aragato mountain. Akad. Nauk. Arm. SSSR. Izv. Biol. Nauk.18(2): 37–40.

    CAS  Google Scholar 

  • Nasyrov, Y. S., Z. N. Abdurachmanova, andY. E. Giller. 1965. The action of ultraviolet radiation upon the plant photosynthetic apparatus. Inst. Plant Physiol. Tajik Acad. Sci. Dushanbe USSR.

    Google Scholar 

  • ——,A. Ergashev, andK. Aliev. 1971. Mechanism of the action of high mountain UV radiation on the formation and functional activity of the photosynthetic apparatus. Doklad Akad. Nauk. Tadzh SSR14: 53–56.

    CAS  Google Scholar 

  • Neer, R. M., et al. 1971. Stimulation by artificial lighting of calcium absorption in elderly human subjects. Nature229: 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Newcomer, H. S. 1917. The abiotic action of ultra-violet light. J. Exp. Med.26: 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Ng, Y. L., K. V. Thimann, andS. A. Gordon. 1964. The biogenesis of anthocyanins. X. The action spectrum for anthocyanin formation inSpirodela oligorrhiza. Arch. Biochem. Biophys.107: 550–558.

    Article  PubMed  CAS  Google Scholar 

  • Nikitina, A. N., M. M. Lebedeva, M. M. Yakubova, andY. S. Nasyrov. 1971. Effect of high altitude UV radiation on the photochemical activity of chloroplasts. Doklad. Akad. Nauk. Tadnz. SSR12: 57–60.

    Google Scholar 

  • Nilsen, K. N. 1971. Plant responses to near-ultraviolet light. HortScience6: 26–29.

    Google Scholar 

  • Ninnemann, H. andB. Epel. 1973. Inhibition of cell division by blue light. Exp. Cell Res.79: 318–326.

    Article  PubMed  CAS  Google Scholar 

  • — andC. S. French. 1973. Effect of blue light on respiration: an action spectrum for the photoinhibition by blue light. Carnegie Inst. Wash. Yearbook1972, pp. 365–368.

    Google Scholar 

  • —,W. L. Butler, andB. L. Epel. 1970. Inhibition of respiration in yeast by light. Biochem. Biophys. Acta205: 499–506.

    Article  CAS  Google Scholar 

  • ———. 1970. Inhibition of respiration and destruction of cytochrome A3 by light in mitochondria and cytochrome oxidase from beef heart. Biochem. Biophys. Acta205: 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Noethling, W. and H. Stubbe. 1936. Neuere botanische Untersuchungen über die Beziehung von Genmutabilitat zur Quantität und Qualitätkurzwelliger Strahlung. Verhandl 3rd Intl. Kong. Lichtforsch. Wiesbaden, pp. 235–246.

  • Nordio, C. B. 1952, published 1953. Influence of light on anaemia from onions. Soc. Ital. delle Sci. Vet. Atti.6: 116–117.

    Google Scholar 

  • Nothman-Zuckerkandl, H. 1915. Über die erregung der protoplasmaströmung durch verschiedene strahlenarten. Ber. Deutsch. Bot. Ges. 301–313.

  • Nultsch, W. 1962. Phototaktische Aktionsspectrum von Cyanophyceen. Ber. Deutsch Bot. Ges.75: 443–453.

    Google Scholar 

  • Nye, P. W. 1968. An examination of the electroretinogram of the pigeon in response to stimuli of different intensity and wavelength and following intense chromatic adaptation. Vision Res.8: 679–696.

    Article  PubMed  CAS  Google Scholar 

  • Obara, Y. 1970. Studies on the mating behavior of the white cabbage butterfly,Pieris rapae crucivora Boisduval.III. Near-ultraviolet reflection as the signal of intraspecific communication. Zeit. Vgl. Physiol.69: 99–116.

    Article  Google Scholar 

  • Ogawa, T., Y. Inoue, M. Kitajima, andK. Shibata. 1973. Action spectra for biosyntheses of chlorophylls a and b and β-carotene. Photochem. Photobiol.18: 229–235.

    Article  CAS  Google Scholar 

  • O’hEocha, C. 1958. Comparative biochemical studies of the phycobilins. Arch. Biochem. Biophys.73: 207–219.

    Article  PubMed  CAS  Google Scholar 

  • Olivera, B. M. andI. R. Lehman. 1967. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme fromEscherichia coli. Proc. Natl. Acad. Sci. (U.S.)57: 1700–1704.

    Article  CAS  Google Scholar 

  • Ootaki, T. andJ. J. Wolken. 1973. Octahedral crystals inPhycomyces. II. J. Cell. Biol.57: 278–288.

    Article  PubMed  CAS  Google Scholar 

  • Osmun, A. V. 1930. Influence of light quality on plant growth. Mass. Agric. Exper. Stat. Bull. 260.

  • -. 1931. Influence of light quality on plant growth. Mass. Agric. Exper. Stat. Bull. 271.

  • Oster, G., J. S. Bellin, andB. Holmstrom. 1962. Photochemistry of riboflavin. Experientia18: 249–286.

    Article  PubMed  CAS  Google Scholar 

  • Ott, J. M. 1965. Effect of wavelength of light on physiological functions of plants and animals. Illuminating Engineer60: 254–261.

    Google Scholar 

  • Page, R. M. 1956. Studies on the development of asexual reproductive structures inPilobolus. Mycologia48: 206–224.

    Article  Google Scholar 

  • — andG. M. Curry. 1966. Studies on phototropism of young sporangiophores ofPilobolus Kleinii. Photochem. Photobiol.5: 31–40.

    Article  CAS  Google Scholar 

  • Pagni, P. G. S., P. L. Walne, andE. L. Wehry. 1976. Fluorometric evidence for flavins in isolated eyespots ofEuglena gracilis var.bacillaris. Photochem. Photobiol.24: 373–375.

    Article  CAS  Google Scholar 

  • Parrish, J. A., C. Y. Ying, M. A. Pathak, andT. B. Fitzpatrick. 1974. Erythemogenic properties of long-wave ultraviolet light. pp. 131–141. In: T. B. Fitzpatrick (ed.). Sunlight and Man. Univ. Tokyo Press, Japan.

    Google Scholar 

  • Partanen, C. R. andJ. Nelson. 1961. Induction of plant tumors by ultraviolet light. Proc. Nat. Acad. Sci.(U.S.)47: 1165–1168.

    Article  CAS  Google Scholar 

  • Pathak, M. A. 1969. Basic aspects of cutaneous photosensitization. pp. 489–571. In: F. Urbach (ed.). Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • — andK. Stratton. 1969. Effects of ultraviolet and visible radiation and the production of free radicals in skin. pp. 207–222. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • — andJ. H. Epstein. 1971. Normal and abnormal reactions of man to light. pp. 977–1036. In: T. B. Fitzpatrick (ed.). Dermatology in General Medicine. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  • —. 1974. Phytophotodermatitis. pp. 495–513. In: T. B. Fitzpatrick (ed.). Sunlight and Man. Univ. Tokyo Press, Japan.

    Google Scholar 

  • —,D. M. Kramer, andT. B. Fitzpatrick. 1974. Photobiology and photochemistry of furocoumarins (psoralens). pp. 335–368. In: T. B. Fitzpatrick (ed.). Sunlight and Man. Univ. Tokyo Press, Japan.

    Google Scholar 

  • —,F. Daniels, Jr., andT. B. Fitzpatrick. 1962. The presently known distribution of furocoumarins (psoralens) in plants. J. Invest. Dermat.39: 225–235.

    Article  CAS  Google Scholar 

  • Payne, M. G. andJ. L. Fults. 1947. Some effects of ultraviolet light on 2,4-D and related compounds. Science106: 37–39.

    Article  PubMed  CAS  Google Scholar 

  • Peak, M. J. 1970. Some observations on the lethal effects of near-ultraviolet light onEscherichia coli, compared with the lethal effects of far-ultraviolet light. Photochem. Photobiol.12:1–8.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. G. Peak. 1973. Protection by histidine from inactivation of DNA transforming activity by near-ultraviolet light (365 nm) compared with farultraviolet light (254 nm). Photochem. Photobiol.18: 525–527.

    Article  PubMed  CAS  Google Scholar 

  • -,-,and R. B. Webb. 1972. The effects of near-ultraviolet radiation on physical and genetic properties of transforming deoxyribonucleic acid. 2nd Mtg. Amer. Photobiol. Soc.

  • ———. 1973. Inactivation of transforming DNA by ultraviolet light. II. Protection by histidine against near-UV irradiation: action spectrum. Mut. Res.20: 137–141.

    CAS  Google Scholar 

  • ———. 1974. Inactivation of transforming DNA by ultraviolet light. III. Further observations on the effects of 365 nm radiation. Mut. Res.20: 143–148.

    Google Scholar 

  • ———. 1975. Synergism between different near-ultraviolet wavelengths in the inactivation of transforming DNA. Photochem. Photobiol.21: 129–131.

    Article  PubMed  CAS  Google Scholar 

  • Peckett, J. M. andC. S. French. 1965. The action spectrum for blue-lightstimulated oxygen uptake inChlorella. Proc. Nat. Acad. Sci. (U.S.)57: 1587–1593.

    Article  Google Scholar 

  • Penzer, G. R. 1970. The chemistry of flavins and flavoproteins: aerobic photochemistry. Biochem. J.116: 733–743.

    PubMed  CAS  Google Scholar 

  • Pereira, O. M., J. R. Smith, andL. Packer. 1976. Photosensitization of human diploid cell cultures by intracellular flavins and protection by antioxidants. Photochem. Photobiol.24: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, J. H. andS. A. Gordon. 1969. Morphogenesis inSchizophyllum commune. II. Effects of monochromatic light. Plant Physiol.44: 1712–1716.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, N. F. 1928. Anatomical study of plants grown under glasses transmitting light of various ranges of wavelengths. Bot. Gaz.85: 427–436.

    Article  Google Scholar 

  • Phillips, S. L., S. Person, andJ. Jagger. 1967. Division delay induced inEscherichia coli by near-ultraviolet radiation. J. Bact.94: 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J. M. andC. S. French. 1967. Action spectrum for blue-light-stimulated oxygen uptake inChlorella. Proc. Natl. Acad. Sci. (U.S.)57: 1587–1593.

    Article  CAS  Google Scholar 

  • Pierschle, K. andF. von Wettstein. 1940. Einige vorlaüfige Beobachtungen über die Wirkung verschiedener Licht intensitaten und quantaten auf höhere Pflanzen unter Konstanten Bedingingen. Biol. Zblt.60: 626–650.

    Google Scholar 

  • ——. 1941. Weitere Beobactungen über den Einfluss von langwelliger und mittelwelliger UV-strahlung auf höhere Pflanzen besonders polyploide und hochalpine Formen. Biol. Zblt.61: 425–436.

    Google Scholar 

  • Pilet, P. E. 1951. Repartition et variations des auxines dans les racines deLens culinares Medikus. Experientia7: 262–265.

    Article  PubMed  CAS  Google Scholar 

  • —. 1960. Action de la lumiere sur le transport d’acide β indolyl-acetique marque par du C14. Experientia16: 111.

    Article  PubMed  CAS  Google Scholar 

  • Pilkington, G. L. 1930. Effect of “Vita” glass on plants. Gardening Illustrated52: 247–248.

    Google Scholar 

  • Pirie, A. andK. J. Dilley. 1974. Photo-oxidation of N’-formylkynurenine and tryptophan peptides by sunlight or simulated sunlight. Photochem. Photobiol.19: 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Plathner, C. H. andH. Taatz. 1959. Research on caries susceptiblity in Golden Hamsters under the influence of ultraviolet light and carbohydrates. Deutsch. Lahn-, Mund-, und Kieferheilkund30: 121–126.

    CAS  Google Scholar 

  • Plavsic, C., T. Strasser, P. Milutinovic, L. Milutinovic, andB. Nedvidek. 1958. Über die Wirkung Kunstlicher und natürlicher UV-Bestrahlung auf die cholesterinämie von arteriellen Hypertonokern. Arch. Physikalesche Ther.6: 463–469.

    Google Scholar 

  • Poff, K. L. and W. L. Butler. 1974a. Blue light-induced absorbance changes inPhycomyces blakesleeanus andDictyostelium discoideum. 50th Ann. Mtg. Soc. Plant Physiol. (Abstr.).

  • ——. 1974b. Absorbance changes induced by blue light inPhycomyces blakesleeanus andDictyostelium discoideum. Nature248: 799–801.

    Article  PubMed  CAS  Google Scholar 

  • - and -. June 1975. Absorbance changes associated with the blue light photoreceptor pigment. 3rd Mtg. Am. Soc. Photobiol.

  • Pollard, E. C. 1974. Cellular and molecular effects of solar ultraviolet radiation. Photochem. Photobiol.20: 301–308.

    Article  Google Scholar 

  • Popp, H. W. 1922. The effect of ultra-violet light on the germination and early growth of plants. Thesis. Penn. State College, State College, Pa.

  • —. 1925. The chemical action of ultraviolet rays. pp. 285–286. In: C. Ellis and A. A. Wells (eds.). The Chemical Action of Ultraviolet Rays. Chemical Catalog Co., N.Y.

    Google Scholar 

  • —. 1926. A physiological study of the effect of light of various ranges of wavelength on the growth of plants. Am. J. Bot.13: 706–736.

    Article  CAS  Google Scholar 

  • — andF. Brown. 1927–28. Effects of ultraviolet rays upon radish seeds and seedlings. Proc. Penna. Acad. Sci.2: 99.

    Google Scholar 

  • — andF. Brown. 1928. Is ultraviolet radiation stimulating to plants? Am. J. Bot.15: 623–624.

    Google Scholar 

  • — andF. Brown. 1933. A review of recent work on the effects of ultraviolet radiation upon seed plants. Bull. Torrey Bot. Club60: 161–210.

    Article  CAS  Google Scholar 

  • — andF. Brown. 1936. The effect of ultra-violet radiation upon seed plants. pp. 853–886. In: B. M. Duggar (ed.). Biological Effects of Radiation. McGraw-Hill, N.Y.

    Google Scholar 

  • — andH. R. C. Mcllvaine. 1937. Growth substances in relation to the mechanism of the action of radiation on plants. J. Agr. Res.55: 931–936.

    Google Scholar 

  • -. 1938. Effects of ultraviolet radiation upon germination and seedling development. Penn. Agric. Exp. Stat. Bull. 366.

  • Porter, C. L. andH. W. Bockstahler. 1929. Concerning the reaction of certain fungi to various wavelengths of light. Proc. Ind. Acad. Sci.38: 133–135.

    Google Scholar 

  • Pratt, L. H. andW. L. Butler. 1970. Phytochrome conversion by ultraviolet light. Photochem. Photobiol.11: 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Pruckner, F. andA. Stern. 1937. Über die Lichtabsorbtion der Porphyrine. IX. Ultraviolette absorption. Zeit. Physik. Chem.A177: 387–397.

    Google Scholar 

  • Pusateri, S. J. 1950. The effect of visible and ultraviolet irradiation on cultured fungi. Thesis, Univ. Southern Calif.

  • Rabinowitch, E. andGovindjee. 1969. Photosynthesis. John Wiley and Sons, New York.

    Google Scholar 

  • Radda, G. K. andM. Calvin. 1964. Chemical and photochemical reductions of flavin nucleotides and analogs. Biochem.3: 384–393.

    Article  CAS  Google Scholar 

  • Radeleff, R. D. 1964. Veterinary Toxicology. Lea & Febiger. Philadelphia.

    Google Scholar 

  • Rakoczy, L. 1965. Action spectrum in sporulation of slime-moldPhysarum nudum. Acta Soc. Bot. Polon.34: 97–112.

    Google Scholar 

  • Ramabhadran, T. V. 1975. Effects of near-ultraviolet and violet radiations (313-405 nm) on DNA, RNA and protein synthesis inE. coli B/r: Implications for growth delay. Photochem. Photobiol.22: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. Jagger. 1975. Evidence against DNA as the target for 334-noninduced growth delay inEscherichia coli. Photochem. Photobiol.21: 227–233.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1976. Mechanism of growth delay induced inEscherichia coli by near ultraviolet radiation. Proc. Nat. Acad. Sci. (U.S.)73: 59–63.

    Article  CAS  Google Scholar 

  • -,T. Fossum, and J. Jagger. June 1975. The chromophore and target for near-UV-induced growth delay inE. coli. 3rd Mtg. Am. Soc. Photobiol.

  • ———. 1976. In vivo induction of 4-thiouridine-cytidine adducts in tRNA ofE. coli B/r by near-ultraviolet radiation. Photochem. Photobiol.23: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, C. A. andA. V. J. Challoner. 1976. Vascular changes in human skin after ultraviolet irradiation. Brit. J. Dermatol.94: 487–493.

    Article  CAS  Google Scholar 

  • Rau, W. 1967. Untersuchungen über die licht abhängige carotinoidsynthesis. I. Das Wirkungsspectrum vonFusarium aquaeductuum. Planta72: 14–28.

    Article  CAS  Google Scholar 

  • Ray, P. M. andG. M. Curry. 1958. Intermediates and competing reactions in the photodestruction of indoleacetic acid. Nature181: 895–896.

    Article  PubMed  CAS  Google Scholar 

  • Reed, C. I. 1925. Studies on the physiological action of light. II. Depression of arterial blood pressure. Am. J. Physiol.74: 511–517.

    CAS  Google Scholar 

  • Regel, E. 1882. Über die Wirkung des Lichtes auf die Pilze. Bot. Zeit.40: 29.

    Google Scholar 

  • Reinert, J. 1952. Über die Bedeutung von Carotin und Riboflavin für die Lechtreizaufnahme bei Pflanzen. Naturwissenschaften39: 47–48.

    Article  CAS  Google Scholar 

  • —. 1953. Über die Wirkung von Riboflavin und Carotin beim Phototropismus vonA vena koleoptilen und bei anderen pflanzlicher Lichtreizreaktionen. Zeit. Bot.41: 103–122.

    CAS  Google Scholar 

  • Reinhardt, D. J. andA. L. Mancinelli. 1968. Development responses ofAcrasis rosea to the visible light spectrum. Develop. Biol.18: 30–41.

    Article  PubMed  CAS  Google Scholar 

  • Reinhold, J. 1929. Frühsalat Kultur unter Ultraviolettglassorten. Obst. Gemuseb.75: 106–107.

    Google Scholar 

  • — andF. Schultz. 1929. Untersuchungen über den Einfluss von Ultraviolett-Glassorten auf den Pflanzenertrag im Gartenbau. Gartenbauwissenschaften2: 40–78.

    Google Scholar 

  • Reiter, J. andD. Garber. 1928. Zellteilungund Strahlung. Sonderh. Wiss. Veröf. Siemens-Konzern, Berlin.

    Google Scholar 

  • Remsberg, R. E. 1940. Studies in the genusTyphula. Mycologia23: 52–96.

    Article  Google Scholar 

  • Resneck, M. A. 1970. Sunlight-induced killing inSaccharomyces cerevisiae. Nature226: 377–378.

    Article  Google Scholar 

  • Richardson, S. D. 1958. Radicle elongation ofPseudotsuga menzeisii in relation to light and gibberellic acid. Nature181: 429–430.

    Article  CAS  Google Scholar 

  • Richtmyer, F. K. 1923. The reflection of ultraviolet by flowers. J. Opt. Soc. Amer.7: 151–168.

    Article  Google Scholar 

  • Rilling, H. C. 1964. On the mechanism of photoinduction of carotenoid synthesis. Biochem. Biophys. Acta79: 464–475.

    PubMed  CAS  Google Scholar 

  • Ripps, H. andR. A. Weale. 1970. The photophysiology of vertebrate color vision. Photophysiology75: 127–168.

    Google Scholar 

  • Robertson, D. F. 1968. Solar ultraviolet radiation in relation to sunburn and skin cancer. Med. J. Aust.2: 1123–1132.

    PubMed  CAS  Google Scholar 

  • Robertson, G. W. 1966. The light composition of solar and sky spectra available to plants. Ecology47: 640–643.

    Article  Google Scholar 

  • Robinson, N. 1966. Solar Radiation. Elsevier, Amsterdam.

    Google Scholar 

  • Roeder, W. von. 1930. Die Verglasung mit Uvioglas. Monatsch. Deutsch. Kakteen Ges.2: 35–37.

    Google Scholar 

  • Rollin, P. 1970. Phytochrome, Photomorphogenese et Photoperiodisme. Masson et Cie., Paris.

    Google Scholar 

  • Ronchi, V. 1970. The nature of light. An historical survey. Heinemann. London.

    Google Scholar 

  • Ronge, H. E. 1948. Ultraviolet irradiation with artificial illumination. A technical, physiological and hygienic study. Acta Physiol. Scand. Suppl. 49.15: 1–191.

    Article  Google Scholar 

  • Rosenheim, O. 1918. Biochemical changes due to environment. Biochem. J. 283–289.

  • Roshchupkin, E. I., A. B. Pelenitsyn, A. Y. Potapenko, V. V. Talitsky, andY. A. Vladimirov. 1975. Study of the effects of ultraviolet light on biomembranes. IV. The effect of oxygen on UV-induced hemolysis and lipid photoperoxidation in rat erythrocytes and liposomes. Photochem. Photobiol.21: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Roth, D. 1973. Protective interaction between flavin and UV-irradiated DNA. Dept. of Pathology, NYU Medical School. New York, N.Y.

    Google Scholar 

  • Ruge, U. 1959. Der vitamin B1-gehalt von Tradescantia-Blättern in abhangigkeit von der Wellenlange des Lichtes. Zeit. Naturforsch.14B: 582–584.

    CAS  Google Scholar 

  • Rupert, C. S. 1960. The mechanism of photoreactivation. pp. 49–71. In: M. Burton, J. S. Kirby-Smith, and J. L. Mager (eds.). Comparative Effects of Radiation. John Wiley & Son, N.Y.

    Google Scholar 

  • —. 1964. Photoreactivation of ultraviolet damage. Photophysiology2: 283–327.

    Google Scholar 

  • -. 1916. Photorepair-the phenomenon and the process. 4th Mtg. Am. Soc. Photobiol.

  • — andK. To. 1976. Substrate dependence of the action spectrum for photoenzymic repair of DNA. Photochem. Photobiol.24: 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Russell, N. K. 1927. Vita glass. Gard. Chron.81: 218.

    Google Scholar 

  • Sachs, J. von. 1887. Über die Wirkung der ultraviolettenstrahlen auf die Blutenbildung. Arb. Bot. Inst. Surlzberg.3: 372–388.

    Google Scholar 

  • Sagromsty, H. 1952. Der einfluss des Lichtes auf die rhythmische konodienbildung vonPenicillium. Flora139: 300–313.

    Google Scholar 

  • Saleeby, C. W. 1927. Growth of plants under vitaglass. Gard. Chron.81: 452.

    Google Scholar 

  • Sams, W. M., Jr. 1974. The role of sunlight in solar urticaria and lupus erythematosus. pp. 711–715. In: T. B. Fitzpatrick (ed.). Sunlight and Man. Univ. Tokyo Press, Japan.

    Google Scholar 

  • Sanderson, J. A. andE. O. Hulbert. 1955. Sunlight as a source of radiation. pp. 95–118. In: A. Hollaender (ed.). Radiation Biology. II. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  • Sargent, M. L. andW. R. Briggs. 1967. The effects of light on a circadian rhythm of conidiation inNeurospora. Plant Physiol.42: 1504–1510.

    Article  PubMed  CAS  Google Scholar 

  • Sauberer, F. 1955. Über die naturliche ultraviolett Strahlung. Wetter und Leben7: 80–85.

    Google Scholar 

  • Sayre, J. D. 1928. The development of chlorophyll in seedlings in different ranges of wavelengths of light. Plant Physiol.3: 71–77.

    Article  PubMed  CAS  Google Scholar 

  • —. 1929. Opening of stomata in different ranges of wavelengths of light. Plant Physiol.4: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, V. 1969. Artificial production of ultraviolet radiation, introduction and historical review, pp. 93–105. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Schanz, F. 1918. Einfluss des Lichtes auf die Gestaltung der vegetation. Ber. Deutsch. Bot. Ges.36: 619–632.

    Google Scholar 

  • —. 1919. Wirkung des Lichtes verschiedener Wellenlange auf die Pflanzen. Ber. Deutsch Bot. Ges.37: 430–442.

    Google Scholar 

  • —. 1920a. Versuche über die Wirkung ultravioleter strahlen des tageslicht auf die vegetation. Pflügers Arch.181: 229–240.

    Article  Google Scholar 

  • —. 1920b. The effects of light on plants. Scientific American Monthly1: 12–16.

    Google Scholar 

  • Schiff, J. A., H. Lyman, andH. T. Epstein. 1961. Studies of chloroplast development inEuglena. II. Photoreversal of the U.V. inhibitors of green colony formation. Biochem. Biophys. Acta50: 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W. andW. L. Butler. 1976. Flavin-mediated photoreactions in artificial systems: A possible model for the blue-light photoreceptor pigment in living systems. Photochem. Photobiol.24: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • -,P. Filner, and K. L. Poff. 1976. Inhibitors of phototropism in corn seedlings. Ann. Mtg. Am. Soc. Plant Physiol. (Abstr.)

  • Schneider, R. 1965. Nachweis des Erregers der “Pink Root” der Zwiebeln,Pyrenochaeta terrestris, in Deutschland. Phytopath. Zeit.53: 249–254.

    Article  Google Scholar 

  • Schonbohm, E. 1964a. Die Wirkung kurzwelliger Strahlung auf den Hellrot-Dunkelrotantagonismus bei einigen Photomorphosen anTriticum vulgari undLactuca sativa. Zeit Bot.52: 335–345.

    Google Scholar 

  • Schreiber, H. 1934. Strahlenbiologische Untersuchungen besonders im ultra-violetten spektralbezirk anSaccharomyces turbidans Hansen. Strahlentherapie49: 541–595.

    Google Scholar 

  • Schroeter, C. 1908. Das Pflanzenleben der Alpen. Ein Schilderung dei Hochgebirgsflora. Verlag Albert Raustein. Zürich.

    Google Scholar 

  • Schulz, M. R. andR. M. Klein. 1963. Effects of visible and ultraviolet radiations on the germination ofPhacelia tanacetifolia. Am. J. Bot.50: 430–434.

    Article  Google Scholar 

  • Schulze, R. 1960. Zur biologischen Wirkung der longwelligen ultraviolett Strahlung in den alpen. Strahlentherapie111: 392–398.

    PubMed  CAS  Google Scholar 

  • Schulze, R. andK. Grafe. 1969. Consideration of sky ultraviolet radiation in the measurement of solar ultraviolet radiation, pp. 359–373. In: F. Urbach (ed.). Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Searle, N. Z. andR. C. Hirt. 1965. Ultraviolet spectral energy distribution of sunlight. J. Opt. Soc. Amer.55: 1413–1421.

    Article  Google Scholar 

  • Secrett, F. A. 1930. Vita Glass. Gard. Chron.87: 313.

    Google Scholar 

  • Seibert, M., P. J. Wetherbee, andD. D. Job. 1975. The effects of light intensity and spectral quality on growth and shoot initiation in tobacco calus. Plant Physiol.56: 130–139.

    Article  PubMed  CAS  Google Scholar 

  • Scidl, E. 1969. The influence of ultraviolet radiation on the healthy adult. pp. 447–458. In: F. Urbach (ed.). Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Seliger, H. H. andW. D. McElroy. 1965. Light: Physical and Biological Action. Academic Press, N.Y.

    Google Scholar 

  • Senn, G. 1922a. Untersuchungen über die physiologie der alpenpflanzen. Verh. der Schweiz Naturf-Ges. Bern2: 154–168.

    Google Scholar 

  • —. 1922b. Transpiration einiger alpen- und ebeninpflanzen. Verh. der Schweiz Naturf-Ges. Bern2: 235–236.

    Google Scholar 

  • -. 1925. Einfluss von Licht und Temperatur in der Alpen auf physiologie und anatomie der pflanzen. Verh. Klimatol. Tagung in Davos.

  • Sertz, K. 1967. Wirkungsspektren fur die stark lichtbewegung der chloroplastin, die photodinese und die licht abhangege Viskosität-anderung beiVallisneria spiralis spp.torta. Z. Pflanzenphysiol.56: 246–261.

    Google Scholar 

  • Setlow, R. B. 1974. The wavelength in sunlight effective in producing skin cancer: a theoretical analysis. Proc. Nat. Acad. Sci. (U.S.)71: 3363–3366.

    Article  CAS  Google Scholar 

  • Setlow, J. K. andM. E. Boling. 1963. The action spectrum of an in vitro DNA photoreactivation system. Photochem. Photobiol.2: 471–477.

    Article  CAS  Google Scholar 

  • Seybold, A. 1932. Über die optischen Eigenschaften der Laubblätter I. Planta16: 195–226.

    Article  Google Scholar 

  • —. 1956. Hat die Chloroplasten Verlagerung in Laubblättern eine Bedeutung? Naturwissenschaften43: 90–91.

    Article  Google Scholar 

  • Shakhov, A. A. andB. M. Colubkova. 1963. On chloroplast structure in relation to ultraviolet irradiation. Fiz. Rast.10: 246–252.

    Google Scholar 

  • Shama, S. K. 1974. Occupational phytophotodermatitis. Cutis13: 593–596.

    Google Scholar 

  • Shaw, C. H. 1908. The possible role of light in relation to alpine plants. Science27: 339.

    Google Scholar 

  • Sheard, C. andG. M. Higgins. 1927. The influence of selective and general irradiation by a quartz mercury arc lamp upon the germination and growth of seeds. Science65: 282–284.

    Article  PubMed  CAS  Google Scholar 

  • — andA. F. Johnson. 1930. The effects of infra-red, visible and ultraviolet irradiation on changes in electrical potentials and currents in plants. Science71: 246–248.

    Article  PubMed  CAS  Google Scholar 

  • —,G. M. Higgins, andW. I. Foster. 1930. The germination of seeds, growth of plants and development of chlorophyll as influenced by selective solar irradiation. Science71: 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Sherashor, S. G. 1970. Spectral sensitivity of the cornea to ultraviolet radiation. Biophysika15: 569–571.

    Google Scholar 

  • Shibata, K. andM. Kishida. 1915b. Untersuchungen über das Vorkommen und die physiologische Bedeutung der Flavonderivate in den Pflanzen. II. Ein Beitrage zur chemischen Biologie der alpinen Gewächse. Bot. Mag. (Tokyo)29: 301–308.

    Google Scholar 

  • ——, andI. Nagai. 1915a. Studies on the presence and physiological significance of flavone derivatives in plants. I. Bot. Mag. (Tokyo)29: 118–132.

    Google Scholar 

  • —— andI. Nagai. 1916. Untersuchungen über das Vorkommen und die physiologische Bedeutung der Flavonderivate in den Pflanzen. III. Über den Flavongehalt der Tropenpflanzen. Bot. Mag. (Tokyo)30: 149–178.

    CAS  Google Scholar 

  • Shirley, H. L. 1929. Influence of light intensity and light quality upon the growth of plants. Am. J. Bot.16: 354–389.

    Article  CAS  Google Scholar 

  • —. 1945. Light as an ecological factor. Bot. Rev.11: 497–532.

    Article  Google Scholar 

  • Shropshire, W., Jr. 1963. Photoresponses of the fungus,Phycomyces. Physiol. Rev.43: 38–67.

    PubMed  Google Scholar 

  • — andR. B. Withrow. 1958. Action spectrum of phototropic tip-curvature ofAvena. Plant Physiol.33: 360–365.

    Article  PubMed  CAS  Google Scholar 

  • —,W. H. Klein, andJ. L. Edwards. 1964. Photomorphogenesis induced by flavin-mononucleotide fluorescence. Physiol. Plant.17: 676–683.

    Article  CAS  Google Scholar 

  • Shugar, D. 1951. Photosensibilization des enzymes et des dérivés indoliques par la riboflavin. Bull. Soc. Chim. Biol. (Paris)33: 710–718.

    CAS  Google Scholar 

  • Shull, C. A. andH. B. Lemon. 1931. Penetration of seed coats by ultraviolet radiation. Bot. Gaz.92: 420–428.

    Article  Google Scholar 

  • Siegel, J. M. andG. A. Montgomery. 1959. Ultraviolet absorption spectra of DPN and analogs of DPN. Arch. Biochem. Biophys.82: 288–299.

    Article  PubMed  CAS  Google Scholar 

  • Simon, A. 1932. Die ernahrung unserer kulturpflanzen. Zeit. Ernahrung3: 79–84.

    Google Scholar 

  • Simon, M. I. 1967. Photosensitization. pp. 137–156. In: M. Florkin and E. H. Stotz (eds.). Comprehensive Biochemistry 27. Elsevier Publ. Co., N.Y.

    Google Scholar 

  • Sisson, W. B. and M. M. Caldwell. 1975. Photosynthesis, respiration and growth responses ofRumex patientia to an enhanced solar ultraviolet irradiation regime. 3rd Mtg. Amer. Soc. Photobiol.

  • ——. 1975a. Lamp/filter systems for simulation of solar UV irradiance under reduced atmospheric ozone. Photochem. Photobiol.21: 453–456.

    Article  CAS  Google Scholar 

  • ——. 1975b. Lamp/filter systems for simulation of solar UV irradiance under depleted atmospheric ozone conditions. 2–215-2–231. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. Transportation, Washington, D.C.

    Google Scholar 

  • Slooten, L. 1972. Reaction center preparations ofRhodopseudomonas spheroides: Energy transfer and structure. Biochem. Biophys. Acta256: 452–466.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H. 1975. Phytochrome and Photomorphogenesis. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  • Snell, E. E., O. H. Klatt, H. W. Bruins, andW. W. Cravens. 1953. Growthpromotion by lyxoflavin. II. Relationship to riboflavin in bacteria and chicks. Proc. Soc. Exp. Biol. Med.82: 583–590.

    PubMed  CAS  Google Scholar 

  • Sokolov, M. V. andO. P. Shelkova. 1961. The measurement of natural ultraviolet radiation, pp. 114–118. In: B. C. Christensen and B. Buchmann (eds.). Progress in Photobiology. Elsevier Publ. Co., N.Y.

    Google Scholar 

  • Song, P.-S., T. A. Moore, andM. Sun. 1972b. Excited states of some plant pigments, pp. 33–74. In: C. O. Chichester (ed.). The Chemistry of Plant Pigments. Academic Press, N.Y.

    Google Scholar 

  • ——. 1974. On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate? Photochem. Photobiol.19: 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Sonne, C. 1929. Weitere Mitteilungen über die Abhängkeit der lichtbiologischen Reaktionen von der Wellenlänge des Lichtes. Strahlentherapie31: 778–785.

    Google Scholar 

  • Spikes, J. 1968. Photodynamic action. Photophysiology3: 33–64.

    CAS  Google Scholar 

  • Spikes, J. D. andR. Livingston. 1969. The molecular biology of photodynamic action: sensitized photoauto-oxidations in biological systems. Adv. Radiation Biol.3: 30–121.

    Google Scholar 

  • Sprott, G. D., W. G. Martin, andH. Schneider. 1976. Differential effects of near-UV and visible light on active transport and other membrane processes inEscherichia coli. Photochem. Photobiol.24: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F. W., J. M. Craseman, L. Okun, E. Fox, andC. Laird. 1961. Radiation sensitivity of bacteriophage containing t-bromodeoxyuridine. Virology13: 98–104.

    Article  CAS  Google Scholar 

  • Stair, R. 1969. Measurement of natural ultraviolet radiation. Historical and general introduction, pp. 377–390. In: F. Urbach (ed.). The Biologic Effects of Ultraviolet Radiation. Pergamon Press, N.Y.

    Google Scholar 

  • Stanley, J. M. andC. B. Dominick. 1958. Response of tobacco- and tomatohornworm moths to Black Light. J. Econ. Entomol.51: 78–80.

    Google Scholar 

  • Steeman-Nielsen, E. 1965. On a complication in marine productivity work due to the influence of ultraviolet light. Intl. Council for Exploration of the Sea. Copenhagen.29(2): 130–135.

    Google Scholar 

  • Steiner, A. M. 1969a. Action spectrum for polarotropism in the chloronema of the fernCryopteris filix-mas (L.) Schott. Photochem. Photobiol.9: 507–513.

    Article  PubMed  CAS  Google Scholar 

  • —. 1969b. Action spectrum for polarotropism of the germ tube of the liverwortSphaerocarpos Donnellii Aust. Planta86: 343–352.

    Article  Google Scholar 

  • —. 1970. Red light interactions with blue and ultraviolet light in polarotropism of germlings of a fern and a liverwort. Photochem. Photobiol.12: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic, D. 1960. Polymorphic light eruption. Brit. J. Dermatol.72: 261–270.

    Article  CAS  Google Scholar 

  • Stevens, F. L. 1928. Effects of ultra-violet radiation on various fungi. Bot. Gaz.86: 210–225.

    Article  CAS  Google Scholar 

  • —. 1931. The ascigerous stage ofCalletotrichum lagenarium induced by ultraviolet irradiation. Mycologia23: 134–139.

    Article  Google Scholar 

  • Stewart, W. D. andJ. M. Arthur. 1934. Some effects of radiation from a quartz mercury vapor lamp upon mineral composition of plants. Contrib. Boyce Thompson Inst.16: 225–245.

    Google Scholar 

  • Stickland, R. G. andN. Sunderland. 1972. Photocontrol of growth, and of anthocyanin and chlorogenic acid production in cultured callus tissues ofHaplopappus gracilis. Ann. Bot. N.S.36: 671–685.

    CAS  Google Scholar 

  • Stoien, J. D. andW. J. Wang. 1974. Effect of near-ultraviolet and visible light on mammalian cells in culture. II. Formation of toxic photoproducts in tissue culture medium by black light. Proc. Nat. Acad. Sci. (U.S.)71: 3961–3965.

    Article  CAS  Google Scholar 

  • Stoklasa, J. 1911. Über den Einfluss der ultravioletten Strahlen auf die Vegetation. Centbl. Bakt., Parasit. Infekts. Abt.2. 31: 477–495.

    Google Scholar 

  • Stoy, V. 1956. Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochem. Biophys. Acta21: 395–396.

    Article  PubMed  CAS  Google Scholar 

  • Straub, J. 1954. Das Licht bei der Auslosung der Fruchtkorper bildung vonDidymium nigripes und die Übertragung der Lichtwirkung durch das Plasma. Naturwissenschaften41: 219–220.

    Article  Google Scholar 

  • Sun, M., T. A. Moore, andP.-S. Song. 1972a. Molecular luminescence studies of flavins. I. The excited states of flavins. J. Am. Chem. Soc.94: 1730.

    Article  PubMed  CAS  Google Scholar 

  • Sussenbach, J. S. andW. Berends. 1963. Photosensitized inactivation of deoxyribonucleic acid. Biochem. Biophys. Acta76: 154–156.

    Article  CAS  Google Scholar 

  • ——. 1965. Photodynamic degradation of quinone. Biochem. Biophys. Acta9: 184–185.

    Google Scholar 

  • Sutherland, R. A., J. J. DeLuisi, andA. E. S. Green. 1975. Instrumentation for absolute solar and global ultraviolet irradiance measurements. pp. 2–169-2–201. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. U.S. Dept. of Transportation, Washington, D.C.

    Google Scholar 

  • Swart-Fruchtbauer, H. andA. Rippel-Baldes. 1951. Die Bakterizide Wirkung des Sonnenlichtes. Arch. Mikrobiol.16: 358–362.

    Article  Google Scholar 

  • Swenson, P. A. andR. B. Setlow. 1970. Inhibition of the induced formation of tryptophanase inEscherichia coli by near-ultraviolet radiation. J. Bact.102: 815–819.

    PubMed  CAS  Google Scholar 

  • —,J. E. Ives, andR. L. Schenley. 1975. Photoprotection ofE. coli B/r: Respiration, growth, macromolecular synthesis and repair of DNA. Photochem. Photobiol.21: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Takebe, H. andJ. Jagger. 1969. Action spectrum for growth delay induced inEscherichia coli B/r by far-ultraviolet radiation. J. Bact.98: 677–682.

    PubMed  CAS  Google Scholar 

  • Tan, K. K. 1974. Complete reversibility of sporulation by near ultraviolet and blue light inBotrytis cinera. Trans. Brit. Mycol. Soc.63: 203–205.

    Article  Google Scholar 

  • Thimann, K. V. 1964. Phototropism. Photochem. Photobiol.3: 463–469.

    Article  CAS  Google Scholar 

  • —. 1967. Phototropism. pp. 1–29. In: M. Florkin and E. H. Stolz (eds.). Comprehensive Biochemistry Vol. 27. Elsevier, Amsterdam.

    Google Scholar 

  • —. 1972. Physiology of development. Volume VI B. In: F. C. Steward (ed.). Plant Physiology. A Treatise. Academic Press, N.Y.

    Google Scholar 

  • — andG. M. Curry. 1961. Phototropism. pp. 646–672. In: W. D. McElroy and B. Glass (eds.). Light and Life. Johns Hopkins Press, Baltimore.

    Google Scholar 

  • ——. 1962. Phototropism and phototaxis. pp. 243–309. In: M. Florkin and H. S. Mason (eds.). Comparative Biochemistry, Vol. I. Elsevier, Amsterdam.

    Google Scholar 

  • — andB. S. Radner. 1958. The biogenesis of anthocyanin. VI. The role of riboflavin. Arch. Biochem. Biophys.74: 209–223.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. B. 1965. Primary Photoprocesses in Biology. North Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Thompson, S. H. 1905. Sub-alpine Plants or Flowers of the Swiss Woods and Meadows. George Routledge & Sons, Ltd., London.

    Google Scholar 

  • Thompson, W. R. et al. 1972. Flavonols: Pigments responsible for ultraviolet absorption in nectar guide of flower. Science177: 528–530.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, T. 1928. Tomatoes under Vita Glass. Agric. Gazette, New South Wales39: 596.

    Google Scholar 

  • Tincker, M. A. H. 1930. Some experiments with ultra-violet ray glass. J. Roy. Hort. Soc.55: 79–87.

    Google Scholar 

  • —. 1932. Experiments with ultra-violet ray glass II. J. Roy. Hort. Soc.57: 51–57.

    Google Scholar 

  • Tizzone, G. andG. Cattani. 1896. Über die Widerstandsfahigkeit der Tetanus bazillen gegen physikologische und chemische Einwerkungen. Arch. Exp. Path. Pharmakol.28: 41–60.

    Article  Google Scholar 

  • Todd, P., T. Coohill, andJ. Mahoney. 1968. Responses of cultured Chinese hamster cells to ultraviolet (UV) light of different wavelengths. Rad. Res.35: 390–400.

    Article  CAS  Google Scholar 

  • Tollen, G. 1969. Energy transduction in algal phototoxis. Current Topics in Bioenergetics3: 417–446.

    Google Scholar 

  • Tottingham, W. E. 1932. Are leaf lipides responsive to solar radiation? Science75: 223–224.

    Article  PubMed  CAS  Google Scholar 

  • — andH. Lowsma. 1928. Effects of light upon nitrate assimilation in wheat. J. Am. Chem. Soc.50: 2436–2445.

    Article  CAS  Google Scholar 

  • — andJ. G. Moore. 1931. Some phases of plant development under Vitaglass. J. Agr. Res.43: 133–163.

    CAS  Google Scholar 

  • —,H. L. Stephenson, andE. J. Lease. 1934. Influence of shorter light rays upon absorption of nitrate by the young wheat plant. Plant Physiol.9: 127–142.

    Article  PubMed  CAS  Google Scholar 

  • Treone, E. J., C. M. Leach, andJ. T. Mutch. 1966. Sporogenic substances isolated from fungi. Nature212: 163–164.

    Article  Google Scholar 

  • Trosko, J. E. andV. H. Mansour. 1969. Photoreactivation of ultraviolet lightinduced pyrimidine dimers inGinkgo cells grown in vitro. Mut. Res.7: 120–121.

    CAS  Google Scholar 

  • Tschabold, E. 1967. Physiology of sexual reproduction inHypomyces solani f.cucurbitae. IV. Influences of flavin inhibitors on perithecium formation. Phytopathology57: 1140–1141.

    CAS  Google Scholar 

  • Tsuji, T. 1918. Ultra-violet rays and the sugar cane, pineapple and banana industry. Louisiana Planter & Sugar Industry60: 413–414.

    CAS  Google Scholar 

  • Tyler, J. E. andR. C. Smith. 1970. Measurements of Spectral Irradiance Under Water. Gordon & Breach, N.Y.

    Google Scholar 

  • Tyrrell, R. M. 1973. Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation. Photochem. Photobiol.17: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • —. 1974. The interaction of near U.V. (365 nm) and X-radiations on wild-type and repair-deficient strains ofEscherichia coli K12: Physical and biological measurements. Int. J. Rad. Biol.25: 373–390.

    Article  CAS  Google Scholar 

  • -. 1974. Near UV 300–380 nm. Lethal effects. Ann. Mtg. Am. Photobiology Soc.

  • —. 1976. Rec A+-dependent synergism between 365 nm and ionizing radiation in log-phaseEscherichia coli: A model for oxygen-dependent near-UV inactivation by disruption of DNA repair. Photochem. Photobiol.23: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • —. 1976. Synergistic lethal action of ultraviolet-violet radiations and mild heat inEscherichia coli. Photochem. Photobiol.24: 345–351.

    Article  PubMed  CAS  Google Scholar 

  • — andR. B. Webb. 1973. Reduced dimer excision in bacteria following near-ultraviolet (365 nm) radiation. Mut. Res.19: 361–364.

    CAS  Google Scholar 

  • ——, andM. S. Brown. 1973. Destruction of photoreactivating enzyme by 365 nm radiation. Photochem. Photobiol.18: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • —,R. D. Ley, andR. B. Webb. 1974. Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation. Photochem. Photobiol.20: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Ubing, W. andD. W. Scholte. 1961. Short wave and net radiation under glass as compared with radiation in the open. Agron. J.53: 295–297.

    Article  Google Scholar 

  • U.S. Department of Commerce. Clearing House for Federal Scientific and Technical Information. 1967. Effect and use of ultraviolet radiation-USSR. TT67-31955.

  • Ustinov, D. A. andI. I. Kozunin. 1963. A study of ultraviolet ray penetration through the fur of animals with the aid of the spectrophotometer C-4. (Russian). B. Eksper. Biol. i Med.56(9): 124–126.

    CAS  Google Scholar 

  • Valentin, H. 1930. Über physiologische und chemische Versuche mit U-V-Strahlendurchlassigen Glassern sowie eine Methode zur Wertbestimmung derselben. Pharm. Zeit.75: 982–984; 995–998; 1005–1008.

    CAS  Google Scholar 

  • Verhagen, A. R. H. B. 1966. Light tests and pathological wavelengths in chronic polymorphous light dermatosis. Dermatologia133: 302–312.

    Article  CAS  Google Scholar 

  • Vernon, L. P. 1959. Photochemical oxidation and reduction reactions catalyzed by flavin nucleotides. Biochim. Biophys. Acta36: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Vezina, P. E. andD. W. K. Boulter. 1966. The spectral composition of near ultraviolet and visible radiation beneath forest canopies. Can. J. Bot.44: 1267–1284.

    Article  Google Scholar 

  • Visser, A. J. W., G. J. von Ommen, G. van Ark, F. Müller, andJ. D. W. von Voorst. 1974. Laser photolysis of 3-methyllumiflavin. Photochem. Photobiol.20: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Vodraska, O. 1929. Holzuntersuchungen im ultravioletlicht. Vestnik Ceskosl. Akad. Zemed.5: 586–590.

    Google Scholar 

  • Voerkel, H. 1933. Untersuchungen über die phototaxis der Chloroplasten. Planta21: 156–205.

    Article  CAS  Google Scholar 

  • Volkova, N. V. 1967. Experience in the use of erythemic ultraviolet radiation in the general lighting system of a machine shop. Gigiena i Sanitariga32: 109–111.

    CAS  Google Scholar 

  • vonBraun, W. 1939. Beitr. Biol. Pflanzen26: 331.

    Google Scholar 

  • vonDenffer, D. 1950. Blühhormon oder Blühhemmung? Neue Gesichtspunkte zur physiologie der Blühbildung. Naturwissenschaften37: 317–321.

    Article  Google Scholar 

  • von Glubrecht, H. 1953. Über die Wirkung von UV-Strahlung in somatischen Zellen. Zeit. Naturforsch.88: 17–27.

    Google Scholar 

  • Voss, J. 1936. Über den Einfluss verschiedener Licht- und Strahlenarten auf die Entwicklung landwirtschaftlicher Kulturpflanzen. Ange. Bot.18: 45–75.

    Google Scholar 

  • Wacker, A., H. D. Menniomann, andW. Szybalski. 1962. Effect of visible light on 5-bromouracil-labelled DNA. Nature196: 685–686.

    Article  PubMed  CAS  Google Scholar 

  • Wada, M. andM. Furuya. 1974. Action spectrum for the timing of photoinduced cell division inAdiantum gametophytes. Physiol. Plant.32: 377–381.

    Article  Google Scholar 

  • Wagne, C. 1966. Effect of UV light on lettuce seed germination and on the unfolding of grass leaves. Physiol. Plant19: 128–133.

    Article  Google Scholar 

  • Wahl, R. 1946. Quelques précisions au sujet de l’action de la lumière sur les bactériophages. Ann. Inst. Pasteur72: 284–286.

    Google Scholar 

  • — andR. Laterjet. 1947. Inactivation de bactériophages par des radiations de grandes longueurs d’onde (3400-6000A). Ann. Inst. Pasteur73: 957–971.

    CAS  Google Scholar 

  • Wald, G., P. K. Brown, andP. H. Smith. 1955. Iodopein. J. Gen. Phys.38: 623–680.

    Article  CAS  Google Scholar 

  • Walrant, P. andR. Santus. 1974. N-formyl-kynurenine, a tryptophan photo-oxidation product, as a photodynamic sensitizer. Photochem. Photobiol.19: 411–417.

    Article  PubMed  CAS  Google Scholar 

  • —,P. Santus, andL. I. Grossweiner. 1975. Photosensitizing properties of N-formlkynurenine. Photochem. Photobiol.22: 63–65.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R. J. 1975. Lethal effect of “daylight” fluorescent light on human cells in tissue culture medium. Photochem. Photobiol.21: 373–375.

    Article  PubMed  CAS  Google Scholar 

  • —,J. D. Stoier, andF. Landa. 1974. Lethal effect of near-ultraviolet irradiation on mammalian cells in culture. Nature247: 43–44.

    Article  PubMed  CAS  Google Scholar 

  • Ward, H. M. 1892. Experiments on the action of light onBacillus anthracis. Proc. Roy. Soc. LondonB52: 393–400.

    Google Scholar 

  • —. 1893. The action of light on bacteria. III. Proc. Roy. Soc. LondonR54: 472–475.

    Google Scholar 

  • Waygood, E. R. andG. A. MacLachlan. 1956. The effect of catalase, riboflavin and light on the oxidation of indoleacetic acid. Physiol. Plant.9: 607–617.

    Article  CAS  Google Scholar 

  • Weale, R. A. 1968. Photochemistry and vision. Photophysiology4: 1–46.

    CAS  Google Scholar 

  • Webb, R. B. 1972. Research progress in organic, biological and medicinal chemistry, pp. 283–289. In: U. Gallo and L. Santa Maria (eds.). American Elsevier Vol. 3, Part II.

  • -. 1974. Genetic effects of near-ultraviolet radiation (NUV). 2nd Ann. Mtg. Am. Photobiol. Soc.

  • —,M. M. Malina, andD. F. Benson. 1967. Abstract: Action spectrum for mutagenesis by visible light inEscherichia coli. Genetics56: 594–595.

    Google Scholar 

  • -and M. S. Brown. 1975. Role of pyrimidine dimers and damage to repair systems in near-UV lethality. 3rd Mtg. Am. Photobiol. Soc.

  • ——. 1976. Sensitivity of strains ofEscherichia coli differing in repair capability to far UV, near UV and visible radiations. Photochem. Photobiol.24: 425–432.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. R. Lorenz. 1970. Oxygen dependence and repair of lethal effects of near ultraviolet and visible light. Photochem. Photobiol.12: 283–289.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1972. Toxicity of irradiated mediums for repair-deficient strains ofEscherichia coli. J. Bact.112: 649–652.

    PubMed  CAS  Google Scholar 

  • — andM. M. Malina. 1967. Mutagenesis inEscherichia coli by visible light. Science156: 1104–1105.

    Article  PubMed  CAS  Google Scholar 

  • — andM. M. Malina. 1970. Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures ofEscherichia coli. Photochem. Photobiol.12: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S. J. 1961. Factors affecting the viability of air-borne bacteria. IV. The inactivation and reactivation of air-borneSerratia marcescens by ultraviolet and visible light. Can. J. Microbiol.7: 607–619.

    Article  PubMed  CAS  Google Scholar 

  • —. 1963. The effect of relative humidity and light on air-dried organisms. J. Appl. Bact.26: 307–313.

    Google Scholar 

  • —. 1963. The effect of sublethal doses of artificial sunlight on adaptive enzyme synthesis byEscherichia coli. Can. J. Biochem. Physiol.41: 859–866.

    PubMed  CAS  Google Scholar 

  • -. 1973. Possible metabolic control by directed in-vivo motion. 1st Mtg. Am. Photobiol. Soc.

  • — andJ. S. Bhorjee. 1967. The effect of 3000–4000 Å light on the synthesis of β galactosidase and bacteriophages byEscherichia coli B. Can. J. Microbiol.13: 69–79.

    Article  CAS  Google Scholar 

  • — andK. Malwinska. 1970. The influence of semi-dehydration on the response ofStreptococcus liquifaciens to ultraviolet light. Photochem. Photobiol.11: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • — andC. C. Tai. 1968. Lethal and mutagenic action of 3200–4000 Å light. Can. J. Microbiol.14: 727–735.

    Article  PubMed  CAS  Google Scholar 

  • — andC. C. Tai. 1969. Physiological and genetic implications of selective mutation by light at 320–400 nm. Nature224: 1123–1125.

    Article  PubMed  CAS  Google Scholar 

  • — andC. C. Tai. 1970. Differential, lethal and mutagenic action of 254 nm and 320–400 nm radiation on semi-dried bacteria. Photochem. Photobiol.12: 119–144.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G. 1961. Excited states of proteins, pp. 82–107. In: W. D. McElroy and B. Glass (eds.). Light and Life. Johns Hopkins Univ. Press, Baltimore.

    Google Scholar 

  • Weevers, T. 1952. Flower colours and their frequency. Acta Bot. Neerl.1: 81–92.

    Google Scholar 

  • Wegand, A. 1913. Das ultraviolette ende des sonnenspektrums in verschiedenen höhen bis 9000 nm. Physik Zeit.14: 1144–1160.

    Google Scholar 

  • Weinstein, I. 1930. Quantitative biological effects of monochromatic ultraviolet light. J. Opt. Soc. Amer.20: 443–456.

    Google Scholar 

  • Weiss, H. B., F. A. Soraci, andE. E. McCoy, Jr. 1941. Notes on the reactions of certain insects to different wave-lengths of light. J. N. Y. Entomol. Soc.49: 1–20.

    Google Scholar 

  • Weker, G. 1950. Fluorescence of riboflavin and flavin-adenine dinucleotide. Biochem. J.47: 114–121.

    Google Scholar 

  • Wellman, E. 1971. Phytochrome-mediated flavone glucoside synthesis in cell suspension cultures ofPetroselinium hortense after preirradiation with ultraviolet light. Planta101: 283–286.

    Article  Google Scholar 

  • — andD. Baron. 1974. Durch phytochromkontrollierte enzyme der flavonoid-synthese in Zell suspensions kulturen von Petersilie (Petroselinium hortense Hoffm.). Planta119: 161–164.

    Article  Google Scholar 

  • Wells, P. H. andA. C. Giese. 1950. Photoreactivation of ultraviolet light injury in gametes of the sea urchin,Strongylocentrotus purpuratus. Biol. Bull.99: 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Wender, S. H. October 1946. The action of photosensitizing agents isolated from buckwheat. Amer. J. Vet. Res.7: 486–489.

    CAS  PubMed  Google Scholar 

  • Werbin, H. andE. T. Strom. 1968. Photochemistry of electron-transport quinones. I. Model studies with 2-methyl -1, 4-naphtho quinone (Vitamin K3). J. Am. Chem. Soc.90: 7296–7301.

    Article  PubMed  CAS  Google Scholar 

  • —,B. D. Lakchura, andJ. Jagger. 1974. Near-ultraviolet modification ofEscherichia coli B ubiquinone in vivo and in vitro. Photochem. Photobiol.19: 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Wesbrook, F. F. 1896. Some of the effects of sunlight on tetanus cultures. J. Path. Bact.3: 70–77.

    Article  Google Scholar 

  • Weste, G. 1970. Factors affecting vegetative growth and the production of perithecia in culture byOphiobolus graminis. II. Variations in light and temperature. Aust. J. Bot.18: 11–28.

    Article  Google Scholar 

  • Westfield College. 1928. Vitaglass tests. Gard. Chron.83: 462.

    Google Scholar 

  • Willis, I., A. Klegman, andJ. Epstein. 1972. Effects of long ultraviolet rays on human skin: Photoprotective or photoaugmentative? J. Invest. Dermatol.59: 416–420.

    Article  PubMed  CAS  Google Scholar 

  • Winther, C. 1937. Ein filtersatz für die quarz-quicksilber lampe. Zeit. Elektrochemie43: 691–695.

    CAS  Google Scholar 

  • Withrow, R. B. 1931. Cellophane and gelatine filters for the ultra-violet. Bull. Basic Sci. Res. (Cincinnati).3: 153–160.

    Google Scholar 

  • — andH. M. Benedict. 1931. Preliminary investigation of the growth promoting effect of selected ultraviolet radiations on plants. Bull. Basic Sci. Res. (Cincinnati)3: 161–175.

    Google Scholar 

  • — andA. P. Withrow. 1956. Generation, control and measurement of visible and near-visible radiant energy. pp. 125–258. In: A. Hollaender (ed.). Radiation Biology, Volume III. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  • Wladimiroff, W. W. 1966. Some new stable ultraviolet transmitting solution filters. Photochem. Photobiol.5: 243–250.

    Article  CAS  Google Scholar 

  • Wolff, E. G., Sr.D. M. Fives, andR. M. Klein. 1967. Interference by near ultraviolet and green light with mitosis in the onion root tip meristem. Bull. Torrey Bot. Club94: 411–416.

    Article  Google Scholar 

  • Wolken, J. 1969. Microspectrophotometry and the photoreceptor ofPhycomyces. I. J. Cell. Biol.43: 354–360.

    Article  CAS  Google Scholar 

  • Wolrant, P. andR. Santus. 1974. N-formyl-Kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Photochem. Photobiol.19: 411–417.

    Article  Google Scholar 

  • Wood, A. R. andM. N. Leathwood. 1929. Glasses transparent to ultra-violet radiation. Nature124: 441–442.

    Article  CAS  Google Scholar 

  • Wright, D. N. andG. D. Bailey. 1969. Effect of relative humidity on the stability ofMycoplasma pneumoniae exposed to simulated solar ultraviolet and to visible radiation. Can. J. Microbiol.5: 1449–1452.

    Article  Google Scholar 

  • Wu, F. Y-H. andD. B. McCormick. 1971. Flavin-sensitized photooxidations of tryptophan and tyrosins. Biochem. Biophys. Acta236: 479–486.

    CAS  Google Scholar 

  • Wu, J. H., R. A. Lewin, andH. Werbin. 1967. Photoreactivation of UV-irradiated blue-green algal virus LPP-1. Virology31: 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M. andJ. Myers. 1967. Further search for possible function of pteridine in photosynthesis. Plant Physiol.42: S-34.

    Google Scholar 

  • Wurhmann-Meyer, K. andM. Wuhrmann-Meyer. 1941. Untersuchungen über die absorption ultravioletter strahlen durch Kutikalar- und wachs-schichten von Blatter. I. Planta32: 43–50.

    Article  Google Scholar 

  • Wynd, F. L. andH. J. Fuller. 1931. Some effects of ultraviolet radiation upon the calcium and phosphorus content of higher plants. Ann. Mo. Bot. Gdn.18: 565–579.

    Article  CAS  Google Scholar 

  • Yadov, B. C. 1963. Effect of ultraviolet and visible radiation on the sporulation of species ofHelminthosporium. Diss. Abstr.24: 1786–1787.

    Google Scholar 

  • Yaniv, M., A. Chestier, F. Gros, andA. Favre. 1971. Biological activity of irradiated tRNAval containing a 4-thiouridine-cytosine dimer. J. Mole. Biol.58: 381–388.

    Article  CAS  Google Scholar 

  • Yeoh, O. C. andV. Raghaven. 1966. Riboflavin as photoreceptor in the induction of two-dimensional growth in fern gametophytes. Plant Physiol.41: 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  • Yoakum, G. H. 1975. Tryptophan photoproduct(s): Sensitized induction of strand break (or alkali-labile bonds) in bacterial desoxyribonucleic acid during near-ultraviolet irradiation. J. Bact.122: 199–205.

    PubMed  CAS  Google Scholar 

  • Yoakum, G. andA. Eisenstark. 1972. Toxicity of 1-tryptophan photoproduct on recombinationless (rec) mutants ofSalmonella typhimurium. J. Bact.112: 653–655.

    PubMed  CAS  Google Scholar 

  • —,W. Ferron, A. Eisenstark, andR. B. Webb. 1974. Inhibition of replication gap closure inEscherichia coli by near-ultraviolet light photoproducts of L-tryptophan. J. Bact.119: 62–69.

    PubMed  CAS  Google Scholar 

  • Yocum, C. S., L. H. Allen, andE. R. Lemon. 1964. Photosynthesis under field conditions. VI. Solar radiation balance and photosynthetic efficiency. Agron. J.56: 249–253.

    Article  Google Scholar 

  • Zalokar, M. 1955. Biosynthesis of carotenoids inNeurospora. Action spectrum for photoactivation. Arch. Biochem.56: 318–325.

    Article  PubMed  CAS  Google Scholar 

  • Zamkova, M. A. andE. I. Krivitskaya. 1966. Effect of irradiation by ultraviolet erythema lamps on the working ability of school children (Russian). Pedolog. Inst. Leningrad. Gigi Sanit31: 41–44.

    CAS  Google Scholar 

  • Zaneveld, J. R. V. 1975. Penetration of ultraviolet radiation into natural waters. pp. 2–108-2–157. In: D. S. Nachtwey and M. M. Caldwell (eds.). Impacts of Climatic Change on the Biosphere. Part 1. U.S. Dept. of Transportation, Washington, D.C.

    Google Scholar 

  • Zeevaart, J. A. D. and P. Lee. 1968. Growth suppression ofHaplopappus callus tissue following exposure of the culture medium to near ultraviolet radiation. Plant Research ’68 (MSU/AEC Plant Research Laboratory, pp. 30–31).

  • Zierenberg, B. E., D. M. Kramer, M. G. Geisert, andR. G. Kirste. 1971. Effects of sensitized and unsensitized longwave UV-irradiation of the solution properties of DNA. Photochem. Photobiol.14: 414–520.

    Article  Google Scholar 

  • Zigman, Seymour. 1974. Near UV-induced ocular changes in mice. Abstr. Amer. Soc. Photobiology.

  • —,J. Schultz, andT. Yulo. 1973a. Possible roles of near UV light on the cataractous process. Exp. Eye Res.15: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • —,G. Griess, T. Yulo, andJ. Schultz. 1973b. Ocular protein alterations by near UV light. Exp. Eye Res.15: 255–264.

    Article  PubMed  CAS  Google Scholar 

  • —,T. Yulo, andJ. Schultz. 1974. Cataract induction in mice exposed to near-UV light. Ophthol. Res.6: 259–270.

    Article  CAS  Google Scholar 

  • Zimmer, R. C. 1967. Carrot blight in southwestern Ontario and the importance of radiation and temperature on the sporulation ofAlternaria dauci. Thesis. Univ. Western Ontario, London.

  • Zimmermann, P. W. andA. E. Hitchcock. 1939. Activation of cinamic acid by ultraviolet light and the physiological activity of its emanations. Contri. Boyce Thompson Inst.10: 197–200.

    Google Scholar 

  • Zuclich, J. A. and J. S. Connelly. 1975. Corneal damage induced by near-UV laser radiation. 3rd Mtg. Am. Soc. Photobiol.

  • Zurzycki, J. 1962. The action spectrum for the light depended movements of chloroplasts inLemma trisulca. Acta Soc. Bot. Polon.31: 489–538.

    Google Scholar 

  • —. 1962. The mechanism of the movement of plastids. Handb. Pflanzenphysiol.17/2: 940–978.

    Google Scholar 

  • Zweig, A. andG. W. Nachtigall. 1975. Photosensitized herbicidal action. Photochem. Photobiol.22: 25–259

    Article  Google Scholar 

Download references

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02919082.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R.M. Plants and near-ultraviolet radiation. Bot. Rev 44, 1–127 (1978). https://doi.org/10.1007/BF02860853

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860853

Navigation