Skip to main content

Three Systems of Biomineralization in Plants with Comments on the Associated Organic Matrix

  • Conference paper
Biological Mineralization and Demineralization

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 23))

Abstract

Three systems of biomineralization are common in higher plants. The formation of intracellular deposits of crystalline calcium oxalate takes place in a crystal vacuole. The individual crystal (one to many) develops within a crystal chamber bounded by a membrane and is often associated with tubules and membranes in the crystal vacuole. Other than the presence of polysaccharide and protein, the chemical nature of these elements is not well established. Exactly which elements constitute an organic matrix is not clear. In the formation of calcium carbonate in cystoliths, however, the structure that constitutes the organic matrix is clear. The carbonate is deposited in association with a siliconized cellulose and callose framework. Demineralized cystoliths clearly show this organic “skeleton.” The third system is the formation of hydrated silicon dioxide as deposits of silica gel or opal. Silicon may impregnate primary walls where it is associated with the hemicellulose-pectic fraction of the wall; it may form as intercellular bodies, or it may form internal casts of various cell types. The organic matrix associated with mineralization in higher plants is not well defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajello, L. 1941. Cytology and cellular interrelations of cystolith formation in Ficus elastica. Am. J. Bot. 28: 589–594.

    Article  Google Scholar 

  2. Arnott, H.J. 1966. Studies of calcification in plants. In Third European Symposium on Calcified Tissues, eds. H. Fleisch, H.J.J. Blackwood, and M. Owens, pp. 152–157. New York: Springer-Verlag.

    Google Scholar 

  3. Arnott, H.J. 1976. Calcification in higher plants. In The Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 55–78. Columbia, SC: South Carolina Press.

    Google Scholar 

  4. Arnott, H.J. 1980. An SEM study of crystal idioblasts in pecan. Scanning Electron Microsc. 1980(III): 563–569.

    Google Scholar 

  5. Arnott, H.J. 1980. Carbonates in higher plants. In. Mechanisms of Biomineralization in Animals and Plants, eds. M. Omori and N. Watabe, pp. 211–218. Tokyo, Japan: Tokai University Press.

    Google Scholar 

  6. Arnott, H.J. 1981. An SEM study of twinning in calcium oxalate crystals of plants. Scanning Electron Microsc. 1981(III): 225–234.

    Google Scholar 

  7. Arnott, H.J., and Pautard, F.G.E. 1970. Calcification in plants. In Biological Calcification; Cellular and Molecular Aspects, ed. H. Schraer, pp. 375–446. New York: Appleton-Century-Croft.

    Google Scholar 

  8. Beyrich, H. 1944. Neue Beiträge zur Entwicklungsgeschichte und Morphologie der Zystolithen. Protoplasma 33: 287–313.

    Google Scholar 

  9. Cheavin, W.H.S. 1938. The crystals and cystoliths found in plant cells. Part I. Crystals. Microscope 2 : 155–158.

    CAS  Google Scholar 

  10. Crombie, W.M.L. 1960. Metabolism of extracyclic organic acids. In Encyclopedia of Plant Physiology, ed. W. Ruhland, vol. 12, part 2, pp. 890–933. Berlin: Springer-Verlag.

    Google Scholar 

  11. Darvill, A.; McNeil, M.; Albersheim, P.; and Delmer, D. 1980. The primary cell walls of flowering plants. In The Biochemistry of Plants, ed. N.E. Tolbert, vol. 1, pp. 91–120. New York: Academic Press.

    Google Scholar 

  12. Eilert, G.B. 1974. An ultrastructural study of the development of raphide crystal cells in the roots of Yucca torreyi. Ph.D. Dissertation, University of Texas at Austin (Libr. Congr. Card No. Mic. 74–24, 855). Ann Arbor, MI: University Microfilms.

    Google Scholar 

  13. Eschrich, W. 1954. Ein Beitrag zur Kenntnis der Kailose. Planta 44: 532–542.

    Article  CAS  Google Scholar 

  14. Franceschi, V.R., and Horner, Jr., H.T. 1980. Calcium oxalate crystals in plants. Bot. Rev. 4: 361–427.

    Article  Google Scholar 

  15. Frank, E., and Jensen, W.A. 1970. On the formation of the pattern of crystal idioblasts on Canavalia ensiformis DC, IV. The fine structure of the crystal cells. Planta 95 : 202–217.

    Article  Google Scholar 

  16. Frey-Wyssling, A. 1981. Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am. J. Bot. 68: 130–141.

    Article  CAS  Google Scholar 

  17. Geis, J.W. 1978. Biogenic opal in three species of Gramineae. Ann. Bot. 42: 1119–1129.

    CAS  Google Scholar 

  18. Hayward, D.M., and Parry, D.W. 1980. Scanning electron microscopy of silica deposits in the culms, floral bracts and awns of barley (Hordeum sativum Jess.). Ann. Bot. 46: 541–548.

    Google Scholar 

  19. Hiltz, P., and Pobeguin, T. 1949. Sur la constitution des cystolithes de Ficus elastica. Comptes Rendus 228: 1049–1051.

    CAS  Google Scholar 

  20. Horner, Jr., H.T., and Wagner, B.L. 1980. The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers. Am. J. Bot. 67: 1347–1360.

    Article  Google Scholar 

  21. Kim, K.M., and Johnson, R.B. 1981. Calcium oxalate crystal growth in urinary stones. Scanning Electron Microsc. 1981(III): 147–154.

    Google Scholar 

  22. Krampitz, G., and Witt, W. 1979. Biochemical aspects of biomineralization. In Topics in Current Chemistry, ed. F.L. Boschke, pp. 58–144. Berlin: Springer-Verlag.

    Google Scholar 

  23. Mazia, D. 1938. The binding of Ca, Sr and Ba by Elodea protoplasm. J. Cell Comp. Physiol. 11: 193–203.

    Article  CAS  Google Scholar 

  24. McNair, J.B. 1932. The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am. J. Bot. 19: 255–271.

    Article  CAS  Google Scholar 

  25. Mollenhauer, H.H., and Larson, D.A. 1966. Developmental changes in raphide-forming cells of Vanilla planifolia and Monstera deliciosa. J. Ultr. Res. 16: 55–70.

    Article  CAS  Google Scholar 

  26. Newcomb, E.H. 1980. The general cell. In. The Biochemistry of Plants, ed. N.E. Tolbert, vol. 1, pp. 1–54. New York: Academic Press.

    Google Scholar 

  27. Pentecost, A. 1980. Calcification in plants. Int. Rev. Cytol. 62: 1–27.

    Article  CAS  Google Scholar 

  28. Pobeguin, T. 1954. Contribution a l’étude des carbonates de calcium précipitation du calcaire par les végétaux comparaison avec le monde animal. Ann. des Sci. Nat. Bot. 15: 29–109.

    CAS  Google Scholar 

  29. Postek, M.T. 1981. The occurrence of silica in the leaves of Magnolia grandiflora L. Bot. Gaz. 142: 124–134.

    Article  CAS  Google Scholar 

  30. Price, J.L. 1970. Ultrastructure of druse crystal idioblasts in leaves of Cercidium floridum. Am. J. Bot. 57: 1004–1009.

    Article  Google Scholar 

  31. Sakai, W.S., and Hanson, M. 1974. Mature raphid and raphid idioblast structure in plants of the edible aroid genera Colocasia, Alocasia, and Xanthosoma. Ann. Bot. 38: 739–748.

    Google Scholar 

  32. Sakai, W.S., and Thorn, M. 1979. Localization of silicon in specific cell wall layers of the stomatal apparatus of sugar cane by use of energy dispersive x-ray analysis. Ann. Bot. 44: 245–248.

    CAS  Google Scholar 

  33. Scott, F.M. 1946. Cystoliths and plasmodesmata in Beloperone, Ficus, and Boehmeria. Bot. Gaz. 107: 372–378.

    Article  Google Scholar 

  34. Sunnell, L.A., and Healy, P.L. 1979. Distribution of calcium oxalate crystal idioblasts in corms of taro (Colocasia esculenta). Am. J. Bot. 66 : 1029–1032.

    Article  Google Scholar 

  35. Tilton, V.R., and Horner, Jr., H.T. 1980. Calcium oxalate raphide crystals and crystalliferous idioblasts in the carpels of Ornithogalum caudatum. Ann. Bot. 46: 533–539.

    Google Scholar 

  36. Watabe, N.; Meenakshi, V.R.; Blackwelder, P.L.; Kurtz, E.M.; and Dunkelberger, D.G. 1976. Calcareous spherules in the gastropod Pomacea paludosa. In The Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 283–308. Columbia, SC: South Carolina Press.

    Google Scholar 

  37. Wattendorff, J. 1969. Feinbau und Entwicklung der verkorkten Galciumoxalate-Kristallzellen in der Rinde von Larix decidua Mill. Z. Pflanzenphysiol. 60: 307–347.

    CAS  Google Scholar 

  38. Wattendorff, J. 1976. A third type of raphide crystal in the Plant Kingdom: six-sided raphides with laminated sheaths in Agave americana L. Planta 130: 303–312.

    Article  Google Scholar 

  39. Wattendorff, J. 1978. Feinbau und Entwicklung der Calciumoxalate-Kristallzellen mit suberinähnlichen Kristallscheiden in der Rinde und in sekundären Holz von Acacia Senegal Willd. Protoplasma 95: 193–206.

    Article  CAS  Google Scholar 

  40. Webb, M.A., and Arnott, H.J. 1981. An ultrastructural study of druse crystals in okra cotyledons. Scanning Electron Microsc. 1981(III): 285–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Arnott, H.J. (1982). Three Systems of Biomineralization in Plants with Comments on the Associated Organic Matrix. In: Nancollas, G.H. (eds) Biological Mineralization and Demineralization. Dahlem Workshop Reports, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68574-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68574-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68576-7

  • Online ISBN: 978-3-642-68574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics