Skip to main content

Elementary Steps and Dynamic Aspects of Carrier-Mediated Cation Transport Through Membranes: the Streptogramin Antibiotics (Group B)

  • Conference paper
Biochemistry of Membrane Transport

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Summary

Certain streptogramin antibiotics of the B group strongly interact with membranes, a fact that was hitherto unknown. According to electrical measurements on phospholipid bilayer membranes the peptide-lactone virginiamycin S facilitates the transport of protons, alkali ions, and alkaline earth ions across these membranes, thus acting as a general cation mediator. The cation specificity is H+ >> Rb+ > K+ > Cs+ > Na+ ≈ Ca2+. The pH-dependent interaction between phospholipid membranes (dispersions) and the antibiotic has been investigated employing spectroscopic methods. Virginiamycin S is bound predominantly to the surface region of the membrane; the dissociation constant of the membrane-bound compound is 7 × 10-6 M for the monodeprotonated neutral state and 3.7 × 10-5 M for the corresponding zwitterionic state whereas it is only 1 × 10-4 M for the negatively charged, twice deprotonated state of the antibiotic. About 250 phospholipid molecules form a binding site for one antibiotic molecule. The affinity to the membrane is caused mainly by interaction of the cyclic peptide-lactone ring of the antibiotic with the membrane.

The elementary steps as well as the dynamic aspects that are relevant to the mechanism of action of the proton and metal ion transport mediated by virginiamycin S have been investigated employing spectroscopic techniques and chemical relaxation methods. The kinetics of the proton transfer reactions of virginiamycin S have been studied in 33.8% water in methanol (vol/vol) and required a quantitative differentiation between the various protolytic states of the 3-hydroxypicolinyl residue of the antibiotic, which acts as proton acceptor and donor. In this medium its protolytic properties are similar to those shown when it is membrane-bound. At about pH 7, the overall proton transfer occurring at the 3-hydroxypicolinyl residue of the antibiotic is due mainly to an intramolecular process; the rate constant for proton transfer from the ring nitrogen to the phenolic oxygen is 850 sec-1 and that for the reverse process is 670 sec-1. Evidence was found which suggested that slow conformational rearrangements of the peptide residue of virginiamycin S take place with rate constants of about 102 sec-1. In nonpolar solvents and those of intermediate polarity, virginiamycin S forms stable complexes with cations. Complex formation between alkaline earth ions, and to a certain extent also between alkali ions and the antibiotic, is attributed to the twice and three times deprotonated protolytic states of the 3-hydroxypicolinyl residue; this is consistent with similar studies on simple model compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, M.-L.: Proton transfer kinetics of 5′-deoxypyridoxal. Biochim. Biophys. Acta 320, 86–96 (1973)

    PubMed  CAS  Google Scholar 

  • Anteunis, M.J.O., Callens, R.F.A., Tavernier, D.K.: Solution conformation of virginiamycins (staphylomycins). Eur. J. Biochem. 58, 259–268 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Célis, H., Estrada-O. S., Montal, M.: Model translocators for divalent and monovalent ion transport in phospholipid membranes. I. The ion permeability induced in lipid bilayers by the antibiotic X-537A. J. Membrane Biol. 18, 187–199 (1974)

    Article  Google Scholar 

  • Dixon, H., Kellerman, G.M., Mitchell, C.H., Towers, N.H., Linnane, A.W.: Mikamycin, an inhibitor of both mitochondrial protein synthesis and respiration. Biochem. Biophys. Res. Commun. 43, 780–786 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., DeMaeyer, L.: Theoretical basis of relaxation spectrometry. In: Techniques of Chemistry, Vol. VI, part 2. Weisberger, A., Hammes, G. (eds.). New York: Wiley 1973, pp. 63–146

    Google Scholar 

  • Eisenman, G., Ciani, S.M., Szabo, G.: Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions. Fed. Proc., Fed. Am. Soc. Exp. Biol. 27, 1289–1304 (1968)

    CAS  Google Scholar 

  • Ennis, H.L.: Interaction of vernamycin A with Escherichia coli ribosomes. Biochemistry 10, 1265–1270 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Ennis, H.L.: Binding of the antibiotic vernamycin Bα to Escherichia coli ribosomes. Arch. Biochem. Biophys. 160, 394–401 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Grell, E., Funck, T.: Dynamic properties and membrane activity of ion specific antibiotics. J. Supramol. Struct. 1, 307–335 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Grell, E., Funck, T., Eggers, F.: Structure and dynamic properties of ion-specific antibiotics. In: Membranes, Vol. 3. Eisenman, G. (ed.). New York: Dekker 1975, pp. 1–128

    Google Scholar 

  • Grell, E., Oberbäumer, I.: Dynamic aspects of carrier-mediated cation transport through membranes. In: Chemical Relaxation in Molecular Biology. Rigler, R., Pecht, I. (eds.). Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  • Haydon, D.A., Hladky, S.B: Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Quart. Rev. of Biophysics 5, 187–282 (1972)

    Article  CAS  Google Scholar 

  • Hopfer, U., Lehninger, A.L., Lennarz, W.J.: The effect of the polar moiety of lipids on bilayer conductance induced by uncouplers of oxidative phosphorylation. J. Membrane Biol. 3, 142–155 (1970)

    Article  CAS  Google Scholar 

  • Klotz, I.M.: Protein Interactions. In: The Proteins, Vol. 1, part B. Neurath, H., Bailey, K. (eds.). New York: Academic Press 1953, pp. 727–806

    Google Scholar 

  • Lea, E.J.A., Croghan, P.C.: The effect of 2,4-dinitrophenol on the properties of thin phospholipid films. J. Membrane Biol. 1, 225–237 (1969)

    Article  Google Scholar 

  • Le Blanc, O.H.: The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonyl-cyanide m-chlorophenylhydrazone. J. Membrane Biol. 4, 227–251 (1971)

    Article  Google Scholar 

  • Mueller, P., Rudin, D.O.: Development of K+ — Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. Biophys. Res. Commun. 26, 398–404 (1967)

    CAS  Google Scholar 

  • Oberbäumer, I.: Versuche zur Charakterisierung der Wechselwirkungen des Antibiotikums Virginiamycin S mit Lipid-Membranen. Diplomarbeit Göttingen 1975

    Google Scholar 

  • Ovchinnikov, Yu.A., Ivanov, V.T., Shkrob, A.M.: Membrane Active Complexones. Amsterdam: Elsevier 1974

    Google Scholar 

  • Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Article  CAS  Google Scholar 

  • Ruf, H.: Mechanismus des Carrier-induzierten Protonentransports durch Lipid-Membranen. Dissertation Göttingen (1974)

    Google Scholar 

  • Ruf, H.: The mechanism of carrier-mediated proton transport across lipid bilayer membranes: I. The thermodynamics and kinetics of the binding of the model compound o-methyl red to liposomes. Submitted for publication (1977a)

    Google Scholar 

  • Ruf, H.: The mechanisms of carrier-mediated proton transport across lipid bilayer membranes: II. A theory for the effects of o-methyl red on the electric properties of bilayer membranes. Submitted for publication (1977b)

    Google Scholar 

  • Schadt, M., Haeusler, G.: Permeability of lipid bilayer membranes to biogenic amines and cations: Changes induced by ionophores and correlations with biological activities. J. Membrane Biol. 18, 277–294 (1974)

    Article  CAS  Google Scholar 

  • Schuster, P., Tortschanoff, K., Winkler, H.: Protonenübertragungsreaktionen zweibasischer Säuren in wässriger Lösung: 3-Hydroxypyridin. Z. Naturforsch.31c, 219–224 (1976)

    Google Scholar 

  • Shemyakin, M.M., Ovchinnikov, Yu.A., Ivanov, V.T., Antonov, V.K., Vinogradova, E.I., Shkrob, A.M., Malenkov, G.G., Evstratov, A.V., Laine, I.A., Melnik, E.I., Ryabova, I.D.: Cyclodepepsipeptides as chemical tools for studying ionic transport through membranes, J. Membrane Biol. 1, 402–430 (1969)

    Article  Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P.: The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys. J. 11, 981–994 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Szabo, G., Eisenman, G., Laprade, R., Ciani, S.M., Krasne, S.: Experimentally observed effects of carriers on the electrical properties of bilayer membranes-equilibrium domain. In: Membranes, Vol. 1. Eisenman, G. (ed.). New York: Dekker 1973, pp. 179–328

    Google Scholar 

  • Tanaka, N.: Mikamycin. In: Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor agents. Corcoran, J.W., Hahn, F.E. (eds.). Berlin-Heidelberg-New York: Springer 1975, pp. 487–497

    Google Scholar 

  • Tosteson, D.C., Cook, P., Andreoli, T., Tiefenberg, M.: The effect of valinomycin on potassium and sodium permeability of HK and LK sheep red cells. J. Gen. Physiol. 50, 2513–2525 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Urry, D.W., Ohnishi, M.: Nuclear magnetic resonance and the conformation of cyclic polypeptide antibiotics. In: Spectroscopic Approaches to Biomolecular Conformation. Urry, D.W. (ed.). Chicago: Am. Med. Assoc. 1970, pp. 263–301

    Google Scholar 

  • Vanderhaeghe, H., Parmentier, G.: The structure of factor S of staphylomycin. J. Am. Chem. Soc. 82, 4414–4422 (1960)

    Article  Google Scholar 

  • Vazquez, D.: The streptogramin family of antibiotics. In: Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents. Corcoran, J.W., Hahn, F.E. (eds.). Berlin-Heidelberg-New York: Springer 1975, pp. 521–534

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grell, E., Oberbäumer, I., Ruf, H., Zingsheim, H.P. (1977). Elementary Steps and Dynamic Aspects of Carrier-Mediated Cation Transport Through Membranes: the Streptogramin Antibiotics (Group B). In: Semenza, G., Carafoli, E. (eds) Biochemistry of Membrane Transport. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66564-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66564-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66566-0

  • Online ISBN: 978-3-642-66564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics