Skip to main content

Chemistry and Structure of Precipitated Hydroxyapatites

  • Chapter
Phosphate Minerals

Abstract

Our interest in the phosphate minerals, particularly in hydroxyapatite, comes from the fact that the latter is the prototype of the mineral in bone and other calcified tissues. To understand the structure and formation of the biological apatites it was necessary first to characterize hydroxyapatites which have been precipitated from solutions resembling body fluids. There is also a broad interest in hydroxyapatite throughout the scientific world. Workers in biological mineralization have profited from studies on this material which has taken place in a broad variety of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beebe RA, Frankel SA (1968) The surface hydroxyl population in bone mineral. Koll Z Z Poly 222:56-61

    Article  Google Scholar 

  • Beebe RA, Posner AS (1973) Surface studies on bone mineral and related calcium phosphates. Phys-Chim Cristallogr Apatites DTnt Biol, 230 CMRS, Paris, p 275–281

    Google Scholar 

  • Bernardi G (1969) Chromatography of nuclei acids on hydroxyapatite. I. Chromatography of DNA. BiochemBiophys Acta 174:423–34

    Article  Google Scholar 

  • Berry EE (1967) The structure and composition of some calcium-deficient apatites. J Inorg Nucl Chem 29:317–327

    Article  Google Scholar 

  • Bett HAS, Christner LG, Hall WK (1967) Studies of hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc 89:5535–5541

    Article  Google Scholar 

  • Betts F, Posner AS (1974) A structural model for amorphous calcium phosphate. Trans Am Cryst Assoc 10:73–84

    Google Scholar 

  • Betts F, Trotta R, Goldberg MR, Posner AS (1979) Non-apatite mineral in actively calcifying tissue. Orthop Trans 3:201

    Google Scholar 

  • Blumenthal NC, Posner AS (1973) Hydroxyapatite: Mechanism of formation and properties. Calcif Tissue Res 13:235–243

    Article  Google Scholar 

  • Blumenthal NC, Betts F, Posner AS (1975) Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Res 18:81–90

    Article  Google Scholar 

  • Blumenthal NC, Betts F, Posner AS (1977) Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res 23:245–250

    Article  Google Scholar 

  • Blumenthal NC, Betts F, Posner AS (1981) Formation and structure of calcium-deficient hydroxyapatite. Calcif Tissue Int 33:111–117

    Article  Google Scholar 

  • Blumenthal NC, Posner AS, Holmes JM (1972) Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mater Res Bull 7:1181–1190

    Article  Google Scholar 

  • Blumenthal NC, Posner AS, Silverman L, Rosenberg LC (1979) Effect of proteoglycans on in vitro hy-droxyapatite formation. Calcif Tissue Int 27:75–82

    Article  Google Scholar 

  • Blumenthal NC, Posner AS, Rosenberg (1980) Further studies on the inhibition of hydroxyapatite formation by proteoglycans. Trans Orthop Res Soc 5:10

    Google Scholar 

  • Blumenthal NC, Posner AS, Triffitt JT (1981) Inhibition of hydroxyapatite by a human glycoprotein. Trans Orthop Res Soc 6:56

    Google Scholar 

  • Boskey AL (1978) The role of Ca-PL-P04 complexes in tissue mineralization. Metab Bone Dis Rel Res 1:137–142

    Article  Google Scholar 

  • Boskey AL (1981) Current concepts of the physiology and biochemistry of calcification. Clin Orthop 167:165–196

    Google Scholar 

  • Boskey AL, Posner AS (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite: A pH-dependent, solution-mediated, solid-solid conversion. J Phys Chem 77:2313— 2317

    Article  Google Scholar 

  • Boskey AL, Posner AS (1974) Magnesium stabilization of amorphous calcium phosphate: A kinetic study. Mater Res Bull 9:907–916

    Article  Google Scholar 

  • Boskey AL, Posner AS (1976) Formation of hydroxyapatite at low supersaturation. J Phys Chem 80:40–45

    Article  Google Scholar 

  • Boskey AL, Posner AS (1977) The role of synthetic and bone extracted Ca-phospholipid-phosphate complexes in hydroxyapatite formation. Calcif Tissue Res 23:251–258

    Article  Google Scholar 

  • Boskey AL, Goldberg MR, Posner AS (1978) Calcium-phospholipid-phosphate complexes in mineralizing tissues. Proc Soc Exp Biol Med 157:590–593

    Article  Google Scholar 

  • Bowman RS, Piasecky LJ (1964) Calcium phosphate catalysts and method of production. US Patent 3.149.082

    Google Scholar 

  • Boyan-Salyers BD (1980) Proteolipid and calcification of cartilage. Trans Orthop Res Soc 5:9

    Google Scholar 

  • Brown WE, Chow LC (1976) Chemical properties of bone mineral. Ann Rev Mater Sci 6:213–236

    Article  Google Scholar 

  • Brown WE, Tung MS, Chow LC (1980) Role of octacalcium phosphate in the incorporation of impurities into apatites. Proc 2nd Int Congr Phosph Comp. Inst Mond Phos, Paris, p 59–72

    Google Scholar 

  • Dry ME, Beebe RA (1960) Adsorption studies on bone mineral and synthetic hydroxyapatite. J Phys Chem 64:1300–1304

    Article  Google Scholar 

  • Eanes ED, Gillessen IH, Posner AS (1965a) Intermediate stages in the precipitation of hydroxyapatite. Nature 208:365–367

    Article  Google Scholar 

  • Eanes ED, Zipkin I, Harper RA, Posner AS (1965b) Small angle X-ray diffraction studies on the effect of fluoride on human bone apatite. Arch Oral Biol 10:161–173

    Article  Google Scholar 

  • Eastoe JE (1979) Enamel protein chemistry-past, present and future. J Dent Res 58(B):753–764

    Google Scholar 

  • Elliott JC (1965) The interpretation of the infrared absorption spectra of some carbonate-containing apatites. In: Stack MV, Fearnhead RW (eds) Tooth Enamel. Wright, Bristol, p 20–22

    Google Scholar 

  • Elliott JC (1973) The problems of the composition and structure of the mineral components of the hard tissues. Clin Orthop 93:313–345

    Article  Google Scholar 

  • Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180:1055–1057

    Article  Google Scholar 

  • Fleisch H, Russell RGG, Bisaz S, Bonjour JP (1973) The effects of pyrophosphate and diphosphonates on calcium metabolism. In: Sognnaes RF, Vaughn J (eds) Hard tissue growth, repair and remin- eralization. Elsevier, London, p 331–358

    Google Scholar 

  • Francis MC, Briner WS, Gray JA (1973) Chemical agents in the control of calcification processes in biological systems. In: Sognnaes RF, Vaughn J (eds) Hard tissue growth, repair and remineral- ization. Elsevier, London, p 57–90

    Google Scholar 

  • Gallop PM, Lian JB, Hauschka PV (1980) Carboxylated calcium-binding proteins and vitamin K. N Engl J Med 302:1460–1466

    Article  Google Scholar 

  • Glimcher MJ (1976) Composition, structure and organization of bone and other mineralized tissues and the mechanism of calcification. In: Greep RO, Astwood EB (eds) Williams & Wilkins, Baltimore, Maryland (Handbook of physiology-endocrinology, vol 7, p 25–116)

    Google Scholar 

  • Glimcher MJ, Kossiva D, Roufosse A (1979) Identification of phosphopeptides and y-carboxyglutamic acid-containing peptides in epiphyseal growth plate cartilage. Calcif Tissue Int 27:187–191

    Article  Google Scholar 

  • Hauschka PV, Gallop PM (1979) Purification and calcium binding properties of osteocalcin and the y-carboxyglutamate containing protein of bone in vitamin K metabolism and vitamin K-depen- dent proteins. In: Wasserman RH (ed) Calcium binding proteins and calcium function. Elsevier North Holland, New York, p 338–347

    Google Scholar 

  • Herrman B (1977) Über die Reste des postcranielen Skelettes des Neanderthalers von Le Moustier. Z Morphol Anthropol 68:129–149

    Google Scholar 

  • Howell DS, Pita JC (1976) Calcification of growth plate cartilage with special reference to studies of micropuncture fluids. Clin Orthop 118:208–229

    Google Scholar 

  • Irving JT (1973) Theories of mineralization of bone. Clin Orthop 97:225–236

    Article  Google Scholar 

  • King K (1978) Distribution of y-carboxy glutamic acid in calcified tissues. Biochim Biophys Acta 542:542–546

    Article  Google Scholar 

  • Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223

    Article  Google Scholar 

  • Landis WJ, Boyan-Salyers BD (1981) Characterization of mineral deposits inBacterionema matruchotii using anhydrous methods of specimen preparation. Trans Orthop Res Soc 6:325

    Google Scholar 

  • Landis WJ, Geraudie J, Paine MC, Neuringer JR, Glimcher MJ (1981) An electron optical and analytical study of mineral deposition in the developing fin of trout, Salmo gairdneri. Trans Orthop Res Soc 6:271

    Google Scholar 

  • LeGeros RC, Trautz O, LeGeros JP, Klein E (1968) Carbonate substitution in apatite structure. Bull SocChim Fr 1712–1718

    Google Scholar 

  • LeGeros RZ, Bonel G, LeGeros R (1978) Types of “H20” in human Enamel and in precipitated Apatites. Calcif Tissue Res 26:111–118

    Article  Google Scholar 

  • Likins RC, Posner AS, Steere AC (1958) Effect of Ca treatment on solubility of synthetic hydroxyapatite and rat molar enamel. J Am Dent Assoc 57:335–339

    Google Scholar 

  • Linde A, Brown M, Butler WT (1980) Non-collagenous proteins of dentin, a re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 255:5931–5942

    Google Scholar 

  • Lowenstam HA (1972) Phosphate hard tissues of marine invertebrates: Their nature and mechanical function and some fossil implications. Chem Geol 9:153–166

    Article  Google Scholar 

  • Mackie PE, Young RA (1980) Crystallography of human tooth enemel: Initial structure refinement. Mater Res Bull 15:17–29

    Article  Google Scholar 

  • Maroudas A (1974) Physico-chemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage. Grune & Stratton, New York, p 131–170

    Google Scholar 

  • Martens CS, Harris RC (1970) Inhibition of apatite precipitation in the marine environment by magnesium ions. Geochem Cosmochem Acta 5:621–624

    Article  Google Scholar 

  • McConnell D, Ward P (1978) Nautical uroliths composed of phosphatic hydrogels. Science 199:208–209

    Article  Google Scholar 

  • Menczel J, Posner AS, Harper RA (1965) Age changes in the crystallinity of rat bone apatite. Isr J Med Sci 1:251–252

    Google Scholar 

  • Meyer JL (1979) Hydroxyl content of solution precipitated calcium phosphates. Calcif Tissue Int 27:153–160

    Article  Google Scholar 

  • Montel G (1968) Conceptions nouvelle sur la physicochimie des phosphates de structure apatitique. Bull Soc Chim Fr 1693–1700

    Google Scholar 

  • Nawrot CG, Campbell DJ, Schroeder JK, van Valkenburg M (1976) Dental phosphoprotein-induced formation of hydroxyapatite during in vitro synthesis of amorphous calcium phosphate. Biochem 15:3445–3449

    Article  Google Scholar 

  • Pak CYC, Skinner HCW (1968) Ionic interaction with bone mineral. IV. Varying affinity of synthetic calcium phosphates for Ca2+. Biochim Biophys Acta 165:274–282

    Article  Google Scholar 

  • Posner AS (1969) The crystal chemistry of bone mineral. Physiol Rev 49:760–792

    Google Scholar 

  • Posner AS, Perloff A (1957) Apatites deficient in divalent cations. J Res Nat Bur Stds 58:279–286

    Article  Google Scholar 

  • Posner AS, Beebe RA (1975) The surface chemistry of bone mineral and related calcium phosphates. Sem Arthritis Rheum 4:267–291

    Article  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1977) Role of ATP and Mg in the stabilization of biological and synthetic amorphous calcium phosphates. Calcif Tissue Res 22:208–212

    Article  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1978) Properties of nucleating systems. Metab Bone Dis Rel Res 1:179–183

    Article  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1979) Bone mineral composition and structure. In: Simmons DJ, Kunin AS (eds) Skeletal research. Academic, New York, p 167–192

    Google Scholar 

  • Poyard CF, Freminet A, Bursaux E (1975) The exchange of bone C02 in vivo. Respir Physiol 25:101–107

    Article  Google Scholar 

  • Price PA, Lothringer JW, Nishimoto SK (1980) Absence of the vitamin K-dependent bone protein in fetal rat mineral. Evidence for another y-carboxyglutamic acid-containing component in bone. J Biol Chem 255:2938–2942

    Google Scholar 

  • Rietveld HM (1969) A profile refinement for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  Google Scholar 

  • Robinson R (1923) The possible significance of hexophosphoric esters in ossification. Biochem J 17:286–293

    Google Scholar 

  • Roufosse AH, Landis WJ, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255

    Article  Google Scholar 

  • Smales FC (1971) The Kelvin effect and crystal growth of hydroxyapatite. In: Fearnhead RW, Stack MV (eds) Tooth Enamel II. Wright, Bristol, p 187–196

    Google Scholar 

  • Stutman JM, Posner AS, Lippincott ER (1962) Hydrogen bonding in the calcium phosphates. Nature 193:368–370

    Article  Google Scholar 

  • Termine JD (1972) Biophysical properties of connective tissues. In: Slavkin H (ed) The comparative molecular biology of extracellular matrices. Academic, New York, p 443–450

    Google Scholar 

  • Van Dyke TE, Levine MJ, Herzberg MC, Ellison SA, Hay DI (1979) Isolation of low molecular weight glycoprotein inhibitor of calcium phosphate precipitation from the extra parotid saliva of macaque monkies. Arch Oral Biol 24:85–89

    Article  Google Scholar 

  • Veis A (1978) The role of acidic proteins in biological mineralizations. In: Evrett DH, Vincent B (eds) Ions in macromolecular and biological systems. Colston Paper No 29, Scientechnia, Bristol, p 259–272

    Google Scholar 

  • Veis A, Sharkey M, Dickson I (1977) Non-collagenous proteins of bone and dentin extracellular matrix and their role in organized mineral deposition, in calcium binding proteins and calcium function. In: Wasserman RH (ed) Calcium binding proteins and calcium function. Elsevier, North Holland, New York, p 408–418

    Google Scholar 

  • Young RA (1975) Biological apatite vs. hydroxyapatite at the atomic level. Clin Orthop 113:249–262

    Article  Google Scholar 

  • Young RA (1980) Large effects from small structural differences in apatites. Proc 2nd Int Congr Phosph Comp, Inst Mond Phos, Paris, p 73–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posner, A.S., Blumenthal, N.C., Betts, F. (1984). Chemistry and Structure of Precipitated Hydroxyapatites. In: Nriagu, J.O., Moore, P.B. (eds) Phosphate Minerals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61736-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61738-6

  • Online ISBN: 978-3-642-61736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics