Skip to main content
Log in

Hydroxyl content of solution-precipitated calcium phosphates

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A method is described for determination of the titratable hydroxide ion in calcium phosphate precipitates. The procedure requires accurate analysis of the other titratable species in the crystal lattice but is unaffected by the presence of other lattice constituents or impurities. The method was applied to precipitates that had been previously analyzed by solution thermodynamic techniques, and the results were consistent with the earlier observations. The hydroxide content of the precipitates increased with crystal maturity and with increasing pH of the precipitation medium. The hydroxide content of the amorphous phase and the immediate post-amorphous-crystalline transformation phase was shown to be nearly zero. After 3 to 4 days' maturation, the hydroxide content of precipitates prepared at pH values of 7, 8, and 9 was shown to increase to approximately 23, 40, 56% of that required for pure hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, P.W.: The nature of precipitated calcium phosphates, Trans. Faraday Soc.40:1061–1072, 1950

    Article  Google Scholar 

  2. Brown, W.E., Lehr, J.R., Smith, J.P., and Frazier, A.W.: Crystallography of octacalcium phosphate, J. Am. Chem. Soc.79:5318–5319, 1957

    Article  CAS  Google Scholar 

  3. Posner, A.S., Fabry, C., Dallemagne, M.J.: Defect apatite series in synthetic and natural calcium phosphates: the concept of pseudoapatites, Biochim. Biophys. Acta15:304–305, 1954

    Article  PubMed  CAS  Google Scholar 

  4. Posner, A.S., Perloff, A.: Apatites deficient in divalent cations, J. Res. Natl. Bur. Stand.58:279–286, 1957

    CAS  Google Scholar 

  5. Winand, L., Dallemagne, M.J., Duyckaerts, G.: Hydrogen bonding in apatitic calcium phosphates, Nature190:164–165, 1961

    Google Scholar 

  6. Kuhl, G., Nebergall, W.H.: Hydrogenphosphat- und carbonatapatite, Z. Anorg. Allgem. Chem.324:313–320, 1963

    Article  Google Scholar 

  7. Berry, E.E.: The structure and composition of some calcium-deficient apatites, J. Inorgan. Nucl. Chem.29:317–327, 1967

    Article  CAS  Google Scholar 

  8. Berry, E.E.: The structure and composition of some calcium-deficient apatites—II, J. Inorgan. Nucl. Chem.29:1585–1590, 1967

    Article  CAS  Google Scholar 

  9. Berry, E.E.: The structure and composition of some calcium-deficient apatites, Bull. Soc. Chim. Fr. (Spec. No.) 1765–1770, 1968

  10. Bett, J.A.S., Christner, L.G., Hall, W.K.: Studies of the hydrogen held by solids. XII. Hydroxyapatite catalysts, J. Am. Chem. Soc.89:5535–5541, 1967

    Article  CAS  Google Scholar 

  11. Cant, N.W., Bett, J.A.S., Wilson, G.R., Hall, W.K.: The vibrational spectrum of hydroxyl groups in hydroxyapatites, Spectrochimica Acta27A:425–439, 1971

    Google Scholar 

  12. Joris, S.J., Amberg, C.H.: The nature of deficiency in non-stoichiometric hydroxyapatites. II. Spectroscopic studies of calcium and strontium hydroxyapatites, J. Phys. Chem.75:3172–3178, 1971

    Article  CAS  Google Scholar 

  13. Termine, J.D., Lundy, D.R.: Hydroxide and carbonate in rat bone mineral and its synthetic analogues, Calcif. Tissue Res.13:73–82, 1973

    Article  PubMed  CAS  Google Scholar 

  14. Blumenthal, N.D., Posner, A.S.: Hydroxyapatite: mechanism of formation and properties, Calcif. Tissue Res.13:235–243, 1973

    Article  PubMed  CAS  Google Scholar 

  15. Vatassery, G.T., Armstrong, W.D., Singer, L.: Determination of hydroxyl content of calcified tissue mineral, Calcif. Tissue Res.5:183–188, 1970

    Article  PubMed  CAS  Google Scholar 

  16. Vatassery, G.T., Armstrong, W.D., Singer, L.: The hydroxyl content of calcified tissue mineral; comment to the letter of Blitz and Pellegrino, Calcif. Tissue Res.7:264–266, 1971

    Article  PubMed  CAS  Google Scholar 

  17. Biltz, R.M., Pellegrino, E.D.: The hydroxyl content of calcified tissue mineral, Calcif. Tissue Res.7:259–263, 1971

    Article  PubMed  CAS  Google Scholar 

  18. Meyer, J.L., Eanes, E.D.: A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate, Calcif. Tissue Res.25:209–216, 1978

    Article  PubMed  CAS  Google Scholar 

  19. Fowler, B.O.: Infrared studies of apatites. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra-structure-composition correlations, Inorgan. Chem.13:207–214, 1974

    Article  CAS  Google Scholar 

  20. Murphy, J., Riley, J.P.: A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta27:31–36, 1962

    Article  CAS  Google Scholar 

  21. Hirschman, A., Sobel, A.E.: Composition of the mineral deposited during in vitro calcification in relation to the fluid phase, Arch. Biochem. Biophys.110:237–243, 1965

    Article  PubMed  CAS  Google Scholar 

  22. Gee, A., Deitz, V.R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphates, J. Am. Chem. Soc.77:2961–2965, 1955

    Article  CAS  Google Scholar 

  23. Bates, R.G.: First dissociation constant of phosphoric acid from 0° to 60° C; limitations of the electromotive force method for moderately strong acids, J. Res. Natl. Bur. Stand.47:127–134, 1951

    CAS  Google Scholar 

  24. Bates, R.G., Acree, S.F.: ΔH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0° to 60° C, J. Res. Natl. Bur. Stand.30:129–155, 1943

    CAS  Google Scholar 

  25. Harned, H.S., Davis, R.: The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°, J. Am. Chem. Soc.65:2030–2037, 1943

    Article  CAS  Google Scholar 

  26. Chughtai, A., Marshall, R., Nancollas, G.H.: Complexes in calcium phosphate solutions, J. Phys. Chem.72:208–211, 1968

    Article  PubMed  CAS  Google Scholar 

  27. Davies, C.W.: Ion Association. Butterworth and Co., London, 1962

    Google Scholar 

  28. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences, p. 56. McGraw-Hill, New York, 1969

    Google Scholar 

  29. Eanes, E.D., Meyer, J.L.: The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH, Calcif. Tissue Res.23:259–269, 1977

    Article  PubMed  CAS  Google Scholar 

  30. Meyer, J.L., Eanes, E.D.: A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation, Calcif. Tissue Res.25:59–68, 1978

    Article  PubMed  CAS  Google Scholar 

  31. Greenfield, D.J., Eanes, E.D.: Formation chemistry of amorphous calcium phosphates prepared from carbonate containing solutions, Calcif. Tissue Res.9:152–162, 1972

    Article  PubMed  CAS  Google Scholar 

  32. Elliott, J.C.: The problems of the composition and structure of the mineral components of the hard tissues, Clin. Orthop.93:313–345, 1973

    PubMed  CAS  Google Scholar 

  33. Termine, J.D., Eanes, E.D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations, Calcif. Tissue Res.10:171–179, 1972

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, J.L. Hydroxyl content of solution-precipitated calcium phosphates. Calcif Tissue Int 27, 153–160 (1979). https://doi.org/10.1007/BF02441178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441178

Key words

Navigation