Skip to main content

Sensory and Behavioural Responses of Terrestrial Invertebrates to Biogenic Carbon Dioxide Gradients

  • Chapter
Advances in Bioclimatology_4

Part of the book series: Advances in Bioclimatology ((ADVS BIOCLIMAT.,volume 4))

Abstract

As CO2 is both a major end product of metabolism in heterotrophic organisms and the predominant carbon source in autotrophic organisms, it is not surprising that variations in its concentration have effects on animals. The effects are highly diverse, particularly if concentrations are above values normally encountered in the habitat, and they can occur on a considerable number of levels (Fuzeau-Braesch and Nicolas 1981; Nicolas and Sillans 1989). The scope of the present review is limited to a single effect, namely the action of CO2 on identified peripheral sensory organs specialized to its detection, and the resulting coordinated behavioural responses at concentrations that occur naturally in the habitats of the organisms under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JF, Ultsch GR (1987) Respiratory gas concentrations in the microhabitats of some Florida arthropods. Comp Biochem Physiol 88A:585–588

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160000 year record of atmospheric CO2. Nature 329:408–414

    Article  CAS  Google Scholar 

  • Bazzaz A (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:67–96

    Article  Google Scholar 

  • Bazzaz A, Fajer ED (1992) Plant life in a C02-rich world. Sei Am 266:18–25

    Google Scholar 

  • Bengtsson G, Hedlund K, Rundgren S (1991) Selective odor perception in the soil collembolan Onychiurus armatus. J Chem Ecol 17:2113–2125

    Article  CAS  Google Scholar 

  • Bjostadt LB, Hibbard BE (1992) 6-methoxy-2-benzoxazolinone: a semiochemical for host location by western corn rootworm larvae. J Chem Ecol 18:931–944

    Article  Google Scholar 

  • Bogner F (1990) Sensory physiological investigation of carbon dioxide receptors in Lepidoptera. J Insect Physiol 36:951–957

    Article  Google Scholar 

  • Bogner F (1992) Response properties of CO2-sensitive receptors in tsetse flies (Diptera: Glossina palpalis). Physiol Entomol 17:19–24

    Article  Google Scholar 

  • Bogner F, Bopprè M, Ernst K-D, Boeckh J (1986) CO2-sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera: Arctiidae): physiology, fine structure and projection. J Comp Physiol A 158:741–749

    Article  PubMed  CAS  Google Scholar 

  • Bowen MF (1991) The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol 36:139–158

    Article  PubMed  CAS  Google Scholar 

  • Boynthon D (1941) Soils in relation to fruit-growing in New York. Part XV. Seasonal and soil influences on oxygen and carbon-dioxide levels of New York orchard soils. Bulletin 763, Cornell Univ Agric Exp St Ithaca.

    Google Scholar 

  • Brady J, Gibson G, Packer MJ (1989) Odour movement, wind direction, and the problem of host-finding by tsetse flies. Physiol Entomol 14:369–380

    Article  Google Scholar 

  • Burkhardt JF (1991) The influence of different C02-concentrations on the behaviour of the ant, Pheidole pallidula. Verh Dtsch Zool Ges 84:303–304

    Google Scholar 

  • Bursell E (1984) Effects of host odour on the behaviour of tsetse. Insect Sei Appl 5:345–349

    CAS  Google Scholar 

  • Carlson DA, Schreck CE, Brenner RJ (1992) Carbon dioxide released from human skin: effect of temperature and insect repellents. J Med Entomol 29:165–170

    PubMed  CAS  Google Scholar 

  • Caulfield F, Bunce JA (1994) Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Physiol Chem Ecol 23:999–1005

    Google Scholar 

  • David CT (1986) Mechanisms of directional flight in wind. In: Payne TL Birch MC Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 49–57

    Google Scholar 

  • Davis EE, Bowen MF (1994) Sensory physiological basis for attraction in mosqitoes. J Am Mosquito Control Assoc 10:316–325

    CAS  Google Scholar 

  • Denmead OT, Bradley EF (1987) On scalar transport in plant canopies. Irrig Sei 8:131–149

    Google Scholar 

  • Den Otter CJ, Van der Goes van Naters WM (1992) Single cell recordings from tsetse (Glossina m.morsitans) antennae reveal olfactory, mechano- and cold receptors. Physiol Entomol 17:33–42

    Article  Google Scholar 

  • Desjardins RL (1992) Review of techniques to measure CO2 flux densities from surface and airborne sensors. In: Stanbell G (ed) Advances in bioclimatology, vol 1. Springer, Berlin Heidelberg New York, pp 1–23

    Chapter  Google Scholar 

  • Desjardins RL, Brach EJ, Alvo P, Schuepp PH (1982) Aircraft monitoring of surface carbon dioxide exchange. Science 216:733–735

    Article  PubMed  CAS  Google Scholar 

  • Desjardins RL, Macpherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of C02, water vapor and sensible heat. Boundary-Layer Meteorol 47:55–69

    Article  Google Scholar 

  • Desser SS, Hong H (1992) Antennal and palpal sensilla of Forcipomyia (Lasiohelea Kieffer) fairfaxensis Wirth, 1951 (Diptera: Ceratopogonidae) from Algonquin Park, Ontario. Can J Zool 70:385–390

    Article  Google Scholar 

  • Dodd AP (1940) The biological campaign against prickly-pear. Queensland Government Printer, Brisbane

    Google Scholar 

  • Dusenbery DB (1987) Theoretical range over which bacteria and nematodes locate plant roots using carbon dioxide. J Chem Ecol 13:1617–1624

    Article  Google Scholar 

  • Eiras AE, Jepson PC (1991) Host location by Aedes aegypti (Diptera: Culicidae): a wind tunnel study of chemical cues. Bull Entomol Res 81:151–160

    Article  Google Scholar 

  • Fuller HJ (1948) Carbon dioxide concentrations of the atmosphere above Illinois forest and grassland. Am Midi Nat 39:247–249

    Article  CAS  Google Scholar 

  • Fuzeau-Braesch S, Nicolas G (1981) Effect of carbon dioxide on subsocial insects. Comp Biochem Physiol 68A:289–297

    Article  CAS  Google Scholar 

  • Galbreath RA (1988) Orientation of grass grub Costelytra zealandica (Coleoptera: Scarabaeidae) to a carbon dioxide source. N Z Entomol 11:6–7

    Google Scholar 

  • Galil J, Zeroni M, Bar Shalom D (1973) Carbon dioxide and ethylene effects in the co-ordination between the pollinator Blastophaga quadraticeps and the syconium in Ficus religiosa. New Phytol 72:1113–1127

    Article  CAS  Google Scholar 

  • Gibson G (1992) Do tsetse flies “see” zebras? A field study of the visual response of tsetse to striped targets. Physiol Entomol 17:141–147

    Google Scholar 

  • Gibson G, Packer MJ, Steullet P, Brady J (1991) Orientation of tsetse flies to wind, within and outside host odour plumes in the field. Physiol Entomol 16:47–56

    Article  Google Scholar 

  • Gifford RM (1992) Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications for the global carbon cycle. In: Stanbell G (ed) Advances in bioclimatology, vol 1. Springer, Berlin Heidelberg New York, pp 24–58

    Chapter  Google Scholar 

  • Gillies MT (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Entomol Res 70:525–532

    Article  Google Scholar 

  • Hangartner W (1969) Carbon dioxide, a releaser for digging behaviour in Solenopsis geminate (Hymenoptera: Formicidae). Psyche (Cambridge) 76:58–67

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones OT, Coaker TH (1977) Oriented responses of carrot fly larvae, Psila rosae, to plant odours, carbon dioxide and carrot root volátiles. Physiol Entomol 2:189–197

    Article  CAS  Google Scholar 

  • Jones OT, Coaker TH (1978) A basis for host plant finding in phytophagous larvae. Entomol Exp Appl 24:272–284

    Article  Google Scholar 

  • Kaib M, Ziesmann J, Wolfrum U (1993) Modulation of odour sensitivity by carbon dioxide in a termite sensillum: a possible mechanism for signal interpretation. In: Wiese K et al. (eds) Sensory systems of arthropods. Birkhaeuser, Basel, pp 481–488

    Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure. Plenum Press, New York, pp 477–516

    Google Scholar 

  • Kellogg FE (1970) Water vapour and carbon dioxide receptors in Aedes aegypti. J Insect Physiol 16:99–108

    Article  PubMed  CAS  Google Scholar 

  • Kent KS, Harrow ID, Quartararo P, Hildebrand JG (1986) An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res 245:237–245

    Article  PubMed  CAS  Google Scholar 

  • Kline DL, Wood JR, Cornell JR (1991) Interactive effects of l-octen-3-ol and carbon dioxide on mosquito (Diptera: Culicidae) surveillance and control. J Med Entomol 28:254–258

    PubMed  CAS  Google Scholar 

  • Kline DL, Hagan DV, Wood JR (1994) Culicoides responses to l-octen-3-ol and carbon dioxide in salt marshes near Sea Island, Georgia, U.S.A. Med Vet Entomol 8:25–30

    Article  PubMed  CAS  Google Scholar 

  • Klingler J (1963) Die Orientierung von Ditylenchus dipsaci in gemessenen künstlichen und biologischen C02-Gradienten. Nematologica 9:185–199

    Article  Google Scholar 

  • Klingler J (1966) Über den Sitz der CO2-Rezeptoren bei der Larve von Otiorrhynchus sulcatus. Entomol Exp Appl 9:271–277

    Article  Google Scholar 

  • Kramer E (1986) Turbulent diffusion and pheromone-triggered anemotaxis. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 11–25

    Google Scholar 

  • Lacher V (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und Drohne (Apis mellifera L.). Z Vergl Physiol 48:587–623

    Article  Google Scholar 

  • Lacher V (1967) Verhaltensreaktionen der Bienenarbeiterin bei Dressur auf Kohlendioxid. Z Vergl Physiol 54:75–84

    Article  Google Scholar 

  • Lance DR (1992) Odors influence choice of oviposition sites by Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J Chem Ecol 18:1227–1237

    Article  Google Scholar 

  • Lee J-K, Selzer R, Altner H (1985) Lamellated outer dendritic segments of a chemoreceptor within wall-pore sensilla in the labial palp pit organ of the butterfly, Pieris rapae L. (Insecta, Lepidoptera). Cell Tissue Res 240:333–342

    Article  Google Scholar 

  • Lee KE, Wood TG (1971) Termites and soils. Academic Press, London

    Google Scholar 

  • Lewis CT (1971) Superficial sense organs of the antennae of the fly, Stomoxys calcitrans. J Insect Physiol 17:449–461

    Article  Google Scholar 

  • Lincoln DE, Fajer ED, Johnson RH (1993) Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol Evol 8:64–68

    Article  PubMed  CAS  Google Scholar 

  • Lüscher M (1961) Air conditioned termite nests. Sei Am 205:138–145

    Google Scholar 

  • Mafra-Neto A, Cardé AT (1994) Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144

    Article  CAS  Google Scholar 

  • McCallum ME, Dusenbery DB (1992) Computer tracking as a behavioral GC detector: Nematode responses to vapor of host roots. J Chem Ecol 18:585–592

    Article  CAS  Google Scholar 

  • Mclver SB (1972) Fine structure of pegs on the palps of female culicine mosquitoes. Can J Zool 50:571–576

    Article  Google Scholar 

  • Mclver SB, McElligott PE (1989) Effects of release rates on the range of attraction of carbon dioxide to some southwestern Ontario mosquito species. J Am Mosquito Control Assoc 5:6–9

    Google Scholar 

  • Monteith JL (ed) (1976) Vegetation and the atmosphere, vol 2. Academic Press, London

    Google Scholar 

  • Moskalyk LA, Friend WG (1994) Feeding behaviour of female Aedes aegypti: effects of diet temperature, bicarbonate and feeding technique on the response to ATP. Physiol Entomoi 19:223–229

    Article  CAS  Google Scholar 

  • Mount GA, Dunn JE (1983) Economic thresholds for lone star ticks (Acari: Ixodidae) in recreational-areas based on a relationship between CO2 and human subject sampling. J Econ Entomoi 76:327–329

    CAS  Google Scholar 

  • Murlis J, Jones CD (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomoi 6:71–86

    Article  Google Scholar 

  • Murlis J, Elkinton JS, Carde RT (1992) Odour plumes and how insects use them. Annu Rev Entomoi 37:505–532

    Article  Google Scholar 

  • Myers JH, Monro J, Murray ND (1981) Egg clumping, host plant selection and population regulation in Cactoblastis cactorum. Oecologia (Berl) 51:7–13

    Article  Google Scholar 

  • Nelson RL (1965) Carbon dioxide as an attractant for Culicoides. J Med Entomoi 2:56–57

    CAS  Google Scholar 

  • Nicolas J, Sillans D (1989) Immediate and latent effects of carbon dioxide in insects. Annu Rev Entomoi 34:97–116

    Article  CAS  Google Scholar 

  • Nihous GC, Masutani SM, Vega LA, Kinoshita CM (1994) Projected impact of deep ocean carbon dioxide discharge on atmospheric C02 concentrations. Clim Change 27:225–244

    Article  CAS  Google Scholar 

  • Nobel PS (1991) Introduction to biophysical plant physiology. Academic Press, San Diego

    Google Scholar 

  • Núñez JA (1982) Food source orientation and activity in Rhodnius prolixus Stal (Hemiptera: Reduviidae). Bull Entomoi Res 72:253–262

    Article  Google Scholar 

  • Omer SM (1979) Responses of females of Anopheles arabiensis and Culex pipiens fatigans to air currents, carbon dioxide and human hands in a flight-tunnel. Entomoi Exp Appl 26:142–151

    Article  Google Scholar 

  • Osmond CB, Monro JM (1981) Prickly Pear. In: Carr DJ, Carr SGM (eds) Plants and man in Australia. Academic Press, Sydney, pp 194–222

    Google Scholar 

  • Osmond CB, Nott DL, Firth PM (1979) Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in eastern Australia. Oecologia (Berl) 40:331–350

    Article  Google Scholar 

  • Paim U, Beckel WE (1963) Seasonal oxygen and carbon dioxide content of decaying wood as a component of the microenvironment of Orthosoma brunneum (Forster) (Coleoptera: Cerambycidae). Can J Zool 41:1133–1147

    Article  CAS  Google Scholar 

  • Paim U, Beckel WE (1964a) The carbon dioxide related behaviour of the adults of Orthosoma brunneum (Forster) (Coleoptera: Cerambycidae). Can J Zool 42:295–303

    Article  CAS  Google Scholar 

  • Paim U, Beckel WE (1964b) The behaviour of the larvae of Orthosoma brunneum (Forster) (Coleoptera: Cerambycidae) in relation to gases found in the logs inhabited by the larvae. Can J Zool 42:327–353

    Article  CAS  Google Scholar 

  • Perritt DW, Couger G, Barker RW (1993) Computer-controlled olfactometer system for studying behavioral responses of ticks to carbon dioxide. J Med Entomoi 30:571–578

    CAS  Google Scholar 

  • Pline M, Dusenbery DB (1987) Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J Chem Ecol 13: 873–888

    Article  Google Scholar 

  • Rasch C, Rembold H (1994) Carbon-dioxide - highly attractive signal for larvae of Helicoverpa armigera. Naturwissenschaften 81:228–229

    Google Scholar 

  • Roessingh P (1989) Trail marking and following by larvae of the small ermine moth Yponomeuta cagnagellus. PhD Thesis, Landbouwuniversiteit Wageningen, Netherlands

    Google Scholar 

  • Sauer JR, Hair J A, Houts MS (1974) Chemo-attraction in the lone star tick (Acarinae: Ixodidae). 2. Responses to various concentrations of CO2. Ann Entomoi Soc Am 67:150–152

    Google Scholar 

  • Seeley TD (1974) Atmospheric carbon dioxide regulation in honeybee colonies. J Insect Physiol 20:2301–2305

    Article  PubMed  CAS  Google Scholar 

  • Seeley TD (1985) Honeybee ecology. Princeton University Press, Princeton

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  CAS  Google Scholar 

  • Snow WF (1970) The effect of a reduction in expired carbon dioxide on the attractiveness of human subjects to mosquitoes. Bull Entomol Res 60:43–48

    Article  Google Scholar 

  • Stange G (1975) Linear relation between stimulus concentration and primary transduction process in insect CO2-receptors. In: Denton DA, Coghlan JP (eds) Olfaction and taste V. Academic Press, New York, pp 207–211

    Google Scholar 

  • Stange G (1992) High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera: Noctuidae). J Comp Physiol A 171:317–324

    Article  Google Scholar 

  • Stange G, Diesendorf M (1973) The response of the honeybee antennal CO2-receptors to N2O and Xe. J Comp Physiol 86:139–158

    Article  CAS  Google Scholar 

  • Stange G, Wong C (1993) Moth response to climate. Nature 365:699

    Article  Google Scholar 

  • Stange G, Osmond CB, Stowe S (1992) Carbon dioxide receptors in moths as high resolution sensors of the metabolic performance of food plants. Chem Senses 17:881

    Google Scholar 

  • Stange G, Monro J, Stowe S, Osmond CB (1995) The CO2-sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia (Berl) 102:341–352

    Article  Google Scholar 

  • Steullet P, Guerin PM (1992a) Perception of breath components in the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae). I. CO2-excited and CO2-inhibited receptors. J Comp Physiol A 170:665–676

    Article  PubMed  CAS  Google Scholar 

  • Steullet P, Guerin PM (1992b) Perception of breath components in the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae). II. Sulfide-receptors. J Comp Physiol A 170:677–685

    Article  PubMed  CAS  Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide budget. Science 259:934–941

    CAS  Google Scholar 

  • Takken W (1991) The role of olfaction in host-seeking of mosquitoes: a review. Insect Sci Appl 12:287–295

    Google Scholar 

  • Torr SJ (1988) Behaviour of tsetse flies (Glossina) in host odour plumes in the field. Physiol Entomol 13:467–478

    Article  Google Scholar 

  • Torr SJ (1989) The host-orientated behaviour of tsetse flies (Glossina): the interaction of visual and olfactory stimuli. Physiol Entomol 14:325–340

    Article  Google Scholar 

  • Torr SJ (1990) Dose responses of tsetse flies (Glossina) to carbon dioxide, acetone and octenol in the field. Physiol Entomol 15:93–103

    Article  CAS  Google Scholar 

  • Turner DA (1971) Olfactory perception of live hosts and carbon dioxide by the tsetse fly Glossina morsitans orientalis Vanderplank. Bull Entomol Res 61:75–96

    Article  Google Scholar 

  • Vale GA, Hall DR (1985) The role of l-octen-3-ol, acetone and carbon dioxide in the attraction of tsetse flies, Glossina spp. (Diptera: Glossinidae) to ox odour. Bull Entomol Res 75:209–217

    Article  CAS  Google Scholar 

  • Van Essen PHA, Kemme JA, Ritchie SA, Kay BA (1994) Differential responses of Aedes and Culex mosquitoes to octenol or light in combination with carbon dioxide in Queensland, Australia. Med Vet Entomol 8:63–67

    Article  PubMed  Google Scholar 

  • Verron H (1963) Role des stimuli chimiques dans l’attraction sociale chez Calotermes flavicollis (Fabr). Insectes Sociaux 10:167–184, 185–296, 297–335

    Google Scholar 

  • Warnes ML (1990) The effect of host odour and carbon dioxide on the flight of tsetse flies (Glossina spp.) in the laboratory. J Insect Physiol 36:607–611

    Article  Google Scholar 

  • Warnes ML, Finlayson LH (1985a) Responses of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), to carbon dioxide and host odours. I. Activation. Bull Entomol Res 75:519–527

    Article  Google Scholar 

  • Warnes ML, Finlayson LH (1985b) Responses of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), to carbon dioxide and host odours. II. Orientation. Bull Entomol Res 75:717–727

    Article  Google Scholar 

  • Werder J, Gothe R (1993) Hyalomma truncatum and Rhipicephalus evertsi mimeticus (Ixodidea, Ixodidae): reactions of adult ticks to vertically incident narrow- and wideband optical radiation with and without the influence of a C02-gradient. Exp Applic Acarol 17:489–501

    Article  Google Scholar 

  • White RA, Paim U, Seabrook WD (1974) Maxillary and labial sites of carbon dioxide sensitive receptors of larval Orthosoma brunneum (Forster) (Coleoptera, Cerambycidae). J Comp Physiol 88:235–246

    Article  Google Scholar 

  • Willemse LPM, Takken W (1994) Odor-induced host location in tsetse flies (Diptera: Glossinidae) J Med Entomol 31:775–794

    PubMed  CAS  Google Scholar 

  • Wilson EO (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith). Animal Behav 10:134–164

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wright RH, Kellogg FE (1962) Response of Aedes aegypti to moist convection currents. Nature 194:402–403

    Article  PubMed  CAS  Google Scholar 

  • Yamana K, Toh Y (1987) Intracellular recording from receptor cells of the temporal organ of the Japanese house centipede, Thereuonema hilgendorfi: receptor potential and conductance changes. J Exp Biol 131:205–213

    Google Scholar 

  • Yamana K, Toh Y (1990) Structure of the temporal organ of the Japanese house centipede, Thereuonema hilgendorfi Verhoeff. J Morphol 203:311–319

    Article  Google Scholar 

  • Yamana K, Toh Y, Tateda H (1986) Electrophysiological studies on the temporal organ of the Japanese house centipede, Thereuonema hilgendorfi. J Exp Biol 126:297–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stange, G. (1996). Sensory and Behavioural Responses of Terrestrial Invertebrates to Biogenic Carbon Dioxide Gradients. In: Stanhill, G. (eds) Advances in Bioclimatology_4. Advances in Bioclimatology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61132-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61132-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64709-3

  • Online ISBN: 978-3-642-61132-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics