Skip to main content

Polyphosphate/Poly-(R)-3-Hydroxybutyrate) Ion Channels in Cell Membranes

  • Chapter
Inorganic Polyphosphates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 23))

Abstract

Among the most intriguing structures formed by inorganic polyphosphates (polyP) are their complexes with poly-(R)-3-hydroxybutyrates) (PHB) that form ion channels in lipid bilayers. All peptide and protein ion channels, as well as synthetic ion channels, are amphiphilic structures with an outer coat of non-polar residues and a lining of polar and charged residues (Urry 1985; Christensen et al. 1988; Nakano et al. 1990; Sansom 1991; Kobuke et al. 1992; Epand 1993; Fyles et al. 1993). These attributes are provided in a cooperative fashion by the two structurally distinct homopolymers, polyP and PHB. The polymeric anion, polyP, forms a ladder of cation binding sites that stretches across the bilayer, shielded from the hydrophobic environment by the amphiphilic solvating polyester, PHB. Complexes of polyP and PHB, located in the plasma membranes of diverse bacteria (Reusch and Sadoff 1983; Reusch et al. 1986, 1987), are the first nonproteinaceous, ion-selective channels discovered in biological cells. Their capacity to form voltage-activated, calcium-selective channels in planar lipid bilayers has been established (Reusch et al. 1995; Das et al. 1997). As yet, there is no direct evidence of their in vivo functions; however, a number of studies point to calcium involvement in important cellular functions in bacteria, such as chemotaxis (Matsushita et al. 1989; Tisa and Adler 1992) and cell division (Chang 1986; Smith 1995; Norris 1996). In addition, there is substantial evidence that polyP/PHB complexes may serve as calcium pumps and DNA channels. Here we will discuss the singular molecular characteristics of polyP and PHB that relate to their roles in ion transport, and consider how the two polymers act in synergy to form these interesting transmembrane ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn K, Kornberg A (1990) Polyphoshate kinase from Escherichia coll. J Biol Chem 265: 11734–11739

    PubMed  CAS  Google Scholar 

  • Alvarez O, Benos D, Latorre R (1985) The study of ion channels in planar lipid bilayer membranes. J Electrophysiol Tech 12: 159–177

    Google Scholar 

  • Ambudkar SV, Zlotnick EW, Rosen BP (1984) Calcium efflux from Escherichia colis : evidence for two systems. J Biol Chem 259: 6142–6146

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54: 450–472

    PubMed  CAS  Google Scholar 

  • Antonov VF, Petrov VV, Molnar AA, Predvoditdelev DA, Ivanov AS (1980) The appearance of single-ion channels in unmodified lipid bilayer membranse at the phase transition temperature. Nature 283: 585–586

    Article  PubMed  CAS  Google Scholar 

  • Armand MB (1987) Current state of PEO-based electrolyte. In: MacCallum JR, Vincent CA, (eds) Polymer electrolyte reviews 1. Elsevier, New York, pp 1–37

    Google Scholar 

  • Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. M Mater Sci 19: 2781–2794

    CAS  Google Scholar 

  • Bark K, Kampfer P, Sponner A, Dott W (1993) Polyphosphate-dependent enzymes in some coryneform bacteria isolated from sewage sludge. FEMS Microbiol Lett 107: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Brandi H, Aeberli B, Bachofen R, Schwegler I, Müller H-M, Bürger MH, Hoffmann T, Lengweiler UD, Seebach D (1995) Biodegradation of cyclic and substituted linear oligomers of poly(3hydroxybutyrate). Can J Microbiol 41: 180–186

    Article  Google Scholar 

  • Bruckner S, Meille AV, Malpezzi L, Cesaro A, Navarini L, Tombolini R (1988) The structure of poly(D-(-)-β-hydroxybutyrate). A refinement based on the Rietveld method. Macromolecules 21: 967–971

    Article  CAS  Google Scholar 

  • Bürger HM, Seebach D (1993) Cation transport across bulk liquid organic membranes with oligomers of (R)-3-hydroxybutanoic acid. Helv Chim Acta 76: 2570–2580

    Article  Google Scholar 

  • Castuma CE, Huang R, Kornberg A, Reusch RN (1995) Inorganic polyphosphates in the acquisition of competence. J Biol Chem 270: 12980–12983

    Article  PubMed  CAS  Google Scholar 

  • Chang CF (1986) Electron probe analysis, X-ray mapping, and electron energy-loss spectroscopy of calcium, magnesium, and monovalent ions in log-phase and in dividing Escherichia coli B cells. J Bacteriol 167: 935–939

    PubMed  CAS  Google Scholar 

  • Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Nat! Acad Sci USA 85: 5072–5076

    Article  CAS  Google Scholar 

  • Corbridge DEC (1995) Phosphorus. An outline of its chemistry, biochemistry and technology. Stud Inorg Chem 20: 224–243

    Google Scholar 

  • Cornibert J, Marchessault RH (1972) Physical properties of poly-ß-hydroxybutyrate. IV. Conformational analysis and crystal structure. J Mol Biol 71: 735–756

    Article  PubMed  CAS  Google Scholar 

  • Cornibert J, Marchessault H (1975) Conformational isomorphism. A general 21 helical conformation for poly(ß-alkanoates). Macromolecules 8: 296–305

    Article  CAS  Google Scholar 

  • Crooke E, Akiyama M, Rao NN, Kornberg A (1994) Genetically altered levels of inorganic polyphosphate in Escherichia coll. J Biol Chem 269: 6290–6295

    PubMed  CAS  Google Scholar 

  • Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in microorganisms. Adv Microb Physiol 10: 135–206

    Article  PubMed  CAS  Google Scholar 

  • Das S, Lengweiler UD, Seebach D, Reusch RN (1997) Proof for a nonproteinaceous calcium-selective channel by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc Natl Acad Sci USA 94: 9075–9079

    Article  PubMed  CAS  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Dunham ET, Glynn IM (1961) Adenosinetriphosphate activity and the active movement of alkali metal ions. J Physiol 156: 274–293

    PubMed  CAS  Google Scholar 

  • Eisenman G, Horn R (1983) Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76: 197–225

    Article  PubMed  CAS  Google Scholar 

  • Epand RM (1993) The amphiatic helix. CRC Press, Ann Arbor, M, pp 222–246

    Google Scholar 

  • Fettiplace D, Haydon A (1980) Water permeability of lipid membranes. Physiol Rev 60: 510–550

    PubMed  CAS  Google Scholar 

  • Fyles TM, James TD, Kaye KC (1993) Activities and modes of action of artificial ion channel mimics. J Am Chem Soc 115: 12315–12321

    Article  CAS  Google Scholar 

  • Gangola P, Rosen BP (1987) Maintenance of intracellular calcium in Escherichia coll. J Biol Chem 26: 12570–12574

    Google Scholar 

  • Gray FM (1992) Solid polymer electrolytes. VCH, New York, pp 1–4

    Google Scholar 

  • Griffin JB, Davidian NM, Penniall R (1965) Studies of phosphorus metabolism by isolated nuclei. J Biol Chem 240: 4427–4434

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosci 4: 69–125

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Bloom FR (1996) Mechanisms of DNA transformation. In: Neidhardt FC (ed) Escherichia coli and Salmonella : cellular and molecular Biology. ASM Press, Washington, DC, pp 2449–2459

    Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through ion channels. Nature 309: 453–456

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable Membranes. Sinauer, Sunderland, MA

    Google Scholar 

  • Holmes PA (1987) Biologically produced (R)-3-hydroxyalkanoate polymers and copolymers. In: Bassett DC (ed) Developments in crystalline polymers-2. Elsevier, New York, pp 1–65

    Google Scholar 

  • Huang R, Reusch RN (1995) Genetic competence in Escherichia coli requires poly-(3hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. J Bacteriol 177: 486–490

    PubMed  CAS  Google Scholar 

  • Huang R, Reusch RN (1996) Poly-(R)-3-hydroxybutyrate) is associated with specific protein in the cytoplasm and membranes of Escherichia coli. J Biol Chem 271: 22196–22202

    Article  PubMed  CAS  Google Scholar 

  • Karr DB, Waters JK, Emerich DW (1983) Analysis of poly-f3-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detec-tion. Appl Environ Microbiol 46: 1339–1344

    CAS  Google Scholar 

  • Kobuke Y, Ueda K, Sokabe M (1992) Artificial non-peptide sinlge ion channels. J Am Chem Soc 114: 7618–7622

    Article  CAS  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177: 491–495

    PubMed  CAS  Google Scholar 

  • Kornberg A, Kornberg S, Simms E (1956) Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta 20: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Kosk-Kosicka D, Scaillet S, Inesi G (1986) The partial reactions in the catalytic cycle of the calcium-dependent adenosine triphosphatase purified from erythrocyte membranes. J Biol Chem 261: 3333–3338

    PubMed  CAS  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, New York, pp 1248

    Google Scholar 

  • Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in micro-organisms. Adv Microb Physiol 24: 83–171

    Article  PubMed  CAS  Google Scholar 

  • Kumble KD, Kornberg A (1995) Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 270: 5818–5822

    Article  PubMed  CAS  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-13-hydroxybutyric acid. J Bacteriol 82: 33–42

    PubMed  CAS  Google Scholar 

  • Lehn JM (1973) Design of organic complexing agents; strategies towards properties. Struct Bonding 16: 1–69

    Article  CAS  Google Scholar 

  • Lengweiler UD, Fritz MG, Seebach D (1996) Sythesis of monodisperse linear and cyclic oligo-mers of (R)-3-hydroxybutyric acid with 128 residues. Hely Chim Acta 79: 670–701

    Article  CAS  Google Scholar 

  • Lynn AR, Rosen BP (1987) Calcium transport in prokaryotes. In: Rosen BP, Silver S (eds) Ion transport in prokaryotes. Academic Press, New York, pp 181–201

    Google Scholar 

  • MacCallum JR, Vincent CA (1987) Ion-molecule and ion-ion interactions. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte reviews 1. Elsevier, New York, pp 23–37

    Google Scholar 

  • Majling J, Hanic F (1980) Phase chemistry of condensed phosphates. Top Phosphorus Chem 10: 341–502

    CAS  Google Scholar 

  • Mandel H, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Marchessault RH, Okamura K, Su CJ (1970) Physical properties of poly(3-hydroxybutyrate). II. Conformational aspects in solution. Macromolecules 3–735–740

    Article  CAS  Google Scholar 

  • Marsh D, Watts A, Knowles PF (1976) Evidence for phase boundary lipid. Permeability of tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition. Biochemistry 15: 3570–3578

    Article  PubMed  CAS  Google Scholar 

  • Martin RB (1990) Bioinorganic chemistry of magnesium. In: Sigel H, Sigel A (eds) Metal ions in biological systems vol 26. Dekker, New York pp 1–13

    Google Scholar 

  • Matheja J, Degens ET (1971) Structural molecular Biology of phosphates. Fischer, Stuttgart, pp 78–90

    Google Scholar 

  • Matsushita T, Hirata H, Kusaka I (1989) Calcium channels in bacteria. Ann N Y Acad Sci 560: 276–278

    Article  Google Scholar 

  • McCleskey EW, Almers W (1985) The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci USA 82: 7149–7153

    Article  Google Scholar 

  • Miller C (1983) Integral membrane channels: studies in model membranes. Physiol Rev 63: 1209–1242

    PubMed  CAS  Google Scholar 

  • Müller HM, Seebach D (1994) Poly(hydroxyalkanoates): a fifth class of physiologically important organic biopolymers? Angew Chem 32: 477–502

    Google Scholar 

  • Nakano A, Xie Q, Mallen JV, Echegoyen L, Gokel GW (1990) Synthesis of a membrane-insertable, sodium cation-conducting channel: kinetic analysis by dynamic 23Na NMR. J Am Chem Soc 112: 1287–1289

    Article  CAS  Google Scholar 

  • Niggli V, Penniston J, Carafoli E (1979) Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254: 9955–9958

    PubMed  CAS  Google Scholar 

  • Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Triner M, Modha K, Norman R (1996) Calcium signalling in bacteria. J Bacteriol 178: 3677–3682

    PubMed  CAS  Google Scholar 

  • Overath P, Träuble H (1973) Phase transitions in cell membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering and dilatometry. Biochemistry 12: 2625–2634

    Article  PubMed  CAS  Google Scholar 

  • Page WJ, von Tigerstrom M (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139: 1058–1061

    PubMed  CAS  Google Scholar 

  • Plattner DA, Brunner A, Dobler M, Müller HM, Petter W, Zbinden P, Seebach D (1993) Cyclic oligomers of (R)-3-hydroxybutanoic acid: preparation and structural aspects. Helv Chim Acta 76: 2004–2033

    Article  CAS  Google Scholar 

  • Reusch RN (1989) Poly-ß-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. Proc Soc Exp Biol Med 191: 377–381

    PubMed  CAS  Google Scholar 

  • Reusch RN (1992) Biological complexes of poly-ß-hydroxybutyrate. FEMS Rev 103: 119–130

    CAS  Google Scholar 

  • Reuch RN, Reusch WH (1993) Branched polyhydroxyalkanoate polymer salt compositions and method of preparation. US Patent no 5,266–422

    Google Scholar 

  • Reusch RN, Sadoff HL (1983) D-(-)-poly-ß-hydroxybutyrate in membranes of genetically competent bacteria. J Bacteriol 156: 778–788

    PubMed  CAS  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and function of a poly-ß-hydroxybutyrate calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA

    Google Scholar 

  • Reusch RN, Hiske TW, Sadoff HL (1986) Poly-ß-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J Bacteriol 168: 553–562

    PubMed  CAS  Google Scholar 

  • Reusch R, Hiske T, Sadoff H, Harris R, Beveridge T (1987) Cellular incorporation of poly-ßhydroxybutyrate into plasma membranes of Escherichia coli and Azotobacter vinelandii alters native membrane structure. Can J Microbiol 33: 435–444

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN, Sparrow AW, Gardiner J (1992) Transport of poly-ß-hydroxybutyrate in human plasma. Biochim Biophys Acta 1123: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN, Huang R, Bramble LL (1995) Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated/Ca2+ channels in the plasma membranes of Escherichia coli. Biophys J 69: 754–766

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN, Huang R, Kosk-Kosicka D (1997) Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump. FEBS Lett 412: 592–596

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP, McClees JS (1974) Active transport of calcium in inverted membrane vesicles of Escherichia coli. Proc Natl Acad Sci USA 71: 5042–5046

    Article  PubMed  CAS  Google Scholar 

  • Sansom MSP (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55: 139–151

    Article  CAS  Google Scholar 

  • Schatzmann HJ (1966) ATP-dependent Ca++-extrusion from human red cells. Experientia 22: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Seebach D, Brunner A, Bürger HM, Schneider J, Reusch RN (1994a) Isolation and 1H-NMR spectroscopic identification of poly-(R)-3-hydroxybutanoate) from prokaryotic and eukaryotic organisms. Eur J Biochem 224: 317–328

    Article  CAS  Google Scholar 

  • Seebach D, Bürger M, Müller HM, Lengweiler UD, Beck AK, Sykes KE, Barker PA, Barham PJ (1994b) Synthesis of linear oligomers of (R)-3-hydroxybutyrate and solid-state structural investigations by electron microscopy and x-ray scattering. Helv Chim Acta 77: 1099–1123

    Article  CAS  Google Scholar 

  • Seebach D, Brunner A, Bachmann BM, Hoffmann T, Kühnle FN, Lengweiler UD (1996a) Biopolymers and -oligomers of (R)-3-hydroxyalkanoic acids - contributions of synthetic organic chemists. Ernst Shering Res Found 28: 1–105

    Google Scholar 

  • Seebach D, Brunner A, Bürger HM, Reusch RN, Bramble LL (1996b) Channel-forming activity of 3-hydroxybutanoic-acid oligomers in planar lipid bilayers. Helv Chim Acta 79: 507–517

    Article  CAS  Google Scholar 

  • Simon W, Morf WE, Meier PC (1973) Specificity for alkali and alkaline earth cations in mem-branes, Struct. Bonding 16: 113–160

    Article  CAS  Google Scholar 

  • Smith HO, Danner DB, Deich RA (1981) Genetic transformation. Annu Rev Biochem 50: 41–68

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ (1995) Calcium and bacteria. Adv Microb Physiol 37: 83–103

    Article  PubMed  CAS  Google Scholar 

  • Sykes KE, McMaster TJ, Miles MJ, Barker PA, Barham PJ, Seebach D, Müller H-M, Lengweiler UD (1995) Direct imaging of the surfaces of poly-ß-hydroxybutyrate and hydroxybutyrate oligomers by atomic force microscopy. J Mater Sci 30: 623–627

    Article  CAS  Google Scholar 

  • Tanaka JC, Furman RE, Barchi RL (1986) Skeletal muscle sodium channels. Isolation and recon-stitution. In: Miller C (ed) Ion channel reconstitution. Plenum Press, New York, pp 277–305

    Google Scholar 

  • Tinsley CR, Manjula BNK, Gotschlich EC (1993) Purification and characterization of polyphos-phate kinase from Neisseria meningitidis. Infect Immun 61: 3703–3710

    CAS  Google Scholar 

  • Tisa LS, Adler J (1992) Calcium ions are involved in Escherichia colt chemotaxis. Proc Natl Acad Sci USA 89: 11804–11808

    Article  PubMed  CAS  Google Scholar 

  • Träuble, H. Overath P (1973) Membrane structure of Escherichia colt. Biochim Biophys Acta 307: 491–512

    Article  PubMed  Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16: 265–290

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1985) Chemical basis of ion transport specificity in biological membranes. Top Curr Chem 128: 175–218

    Article  CAS  Google Scholar 

  • Van Zutphen H, Merola AJ, Brierley GP, Cornwell DG (1972) The interaction of nonionic detergents with lipid bilayer membranes. Arch Biochem Biophys 152: 755–766

    Article  PubMed  Google Scholar 

  • Watanabe M, Ogatu N (1987) In: MacCallum JR, Vincent CA (eds) Polymer electrolyte reviews 1. Elsevier, New York, pp 39–68

    Google Scholar 

  • Watanabe M, Togo M, Sanui K, Ogatu N, Kobayashi T, Ohtaki Z (1984) Ionic conductivity of polymer complexes formed by poly(ß-propiolactone) and lithium perchlorate. Macromol Rev 17: 2908–2912

    Article  CAS  Google Scholar 

  • Welland EL, Stejny J, Halter A, Keller A (1989) Selective degradation of chain folded single crystals of poly)ß-hydroxybutyrate). Polym Commun 30: 302–304

    CAS  Google Scholar 

  • Wilson PW, Knight SG (1952) Experiments in bacterial physiology. Burgess, Minneapolis, MJ

    Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57: 235–260

    Article  PubMed  CAS  Google Scholar 

  • Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352: 516–519

    Article  PubMed  CAS  Google Scholar 

  • Yokouchi M, Chaitani Y, Tadokoror H, Teranishi K, Tani H (1973) Structural studies of polyesters: 5. Molecular and crystal structure of optically active and racemic poly(ß-hydroxybutyrate). Polymer 14: 267–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reusch, R.N. (1999). Polyphosphate/Poly-(R)-3-Hydroxybutyrate) Ion Channels in Cell Membranes. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58444-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58444-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63597-7

  • Online ISBN: 978-3-642-58444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics