Skip to main content

Chemical basis of ion transport specificity in biological membranes

  • Chapter
  • First Online:
Biomimetic and Bioorganic Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 128))

Abstract

This review addresses the issues of the chemical and physical processes whereby inorganic anions and cations are selectively retained by or passed through cell membranes. The channel and carrier mechanisms of membranes permeation are treated by means of model systems. The models are: the planar lipid bilayer for the cell membrane, Gramicidin for the channel mechanism, and Valinomycin for the carrier mechanism.

With respect to the channel mechanism, the phenomenology of channel transport is noted; the molecular structure of the Gramicidin channel is briefly reviewed; the cation binding sites are located within the channel; using Eyring rate theory a free energy profile for ion transit through the channel is developed based on the location of the binding site and the determination of binding and rate constants by physical methods which are independent of the transport mechanism, and it is demonstrated that both binding site location and rate constants must be independently determined in order to achieve the unique description of ionic mechanism. It is shown that inorganic anion vs cation selectivity is the result of the chemical structure of polypeptides combined with conformational energetics of the channel; it is shown that monovalent vs multivalent cation selectivity is the result of the proximity of membrane lipid to the channel proper and properties are proposed for a divalent cation channel; and it is argued that selectivity among monovalent cations is enhanced by the conformation energetics of the channel. Furthermore, a formalism is given which leads to a means of evaluating thermodynamics relative to selectivity among monovalent cations.

With respect to the carrier mechanism, the phenomenology of the carrier transport of ions is discussed in terms of the criteria and kinetic scheme for the carrier mechanism; the molecular structure of the Valinomycin-potassium ion complex is considered in terms of the polar core wherein the ion resides and comparison is made to the Enniatin B complexation of ions; it is seen again that anion vs cation selectivity is the result of chemical structure and conformation; lipid proximity and polar component of the polar core are discussed relative to monovalent vs multivalent cation selectivity and the dramatic monovalent cation selectivity of Valinomycin is demonstrated to be the result of the conformational energetics of forming polar cores of sizes suitable for different sized monovalent cations.

It should be apparent that the principles of selective ion transport are independent of the specific models being treated here and that many of these principles are at variance with what were traditional views on the basis of selective membrane permeation by inorganic ions. Thus, the concept of selectivity among monovalent cations being based on values of hydrated radii is replaced by the demonstration that greater selectivity comes with increased dehydration. The perspective that hydration is the best way to lower ion self energy in order to pass through a protein component in a cell membrane is replaced by demonstration that peptide and ester carbonyls are far better solvators than water and that what is critical is the conformational energetics required to achieve adequate coordination. Furthermore, the earlier prevalent view that the repulsive image force due to the presence of the lipid layer would cause the rate limiting barrier to be in the middle of the membrane is shown to be entirely incorrect for monovalent cations but relevant indeed to multivalent cations. It should also be appreciated that there are other physiocochemical data available from these model systems such as the repulsion between ions at a known distance and separated by a string of water molecules and such as the energetics of lipid membrane deformation. Such information while relevant to the mechanisms of selective permeation of cell membranes has a more general and widespread application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

V References

  1. Cotton, F. A., Wilkinson, G.: Advanced Inorganic Chemistry, A Comprehensive Text, p. 321, Interscience Publishers, 1962

    Google Scholar 

  2. Born, M.: Z. Physik. 1, 45 (1920)

    Article  Google Scholar 

  3. Fettiplace, R., Andrews, D. M., Haydon, D. A.: J. Membrane Biol. 5, 277 (1971)

    Article  Google Scholar 

  4. Bamberg, E., Lauger, P.: Biochim. Biophys. Acta 367, 127 (1974)

    PubMed  Google Scholar 

  5. Benz, R., Lauger, P.: J. Membr. Biol. 27, 171 (1976)

    Article  PubMed  Google Scholar 

  6. Urry, D. W.: Ann. NY Acad. Sci. 307, 3 (1978)

    PubMed  Google Scholar 

  7. Hladky, S. B., Haydon, D. A.: Nature 225, 451 (1970)

    Article  PubMed  Google Scholar 

  8. Hladky, S. B., Haydon, D. A.: Biochim. Biophys. Acta 274, 294 (1972)

    PubMed  Google Scholar 

  9. Mueller, P., Rudin, D. O.: Biochem. Biophys. Res. Commun. 26, 398 (1967)

    Article  PubMed  Google Scholar 

  10. Bradley, R. J., Prasad, K. U., Urry, D. W.: Biochim. Biophys. Acta 649, 281 (1981)

    PubMed  Google Scholar 

  11. Szabo, G., Urry, D. W.: Science 203, 55 (1979)

    PubMed  Google Scholar 

  12. Urry, D. W., Alonso-Romanowski, S., Bradley, R. J.: in preparation

    Google Scholar 

  13. Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G., Urry, D. W.: Int. J. Pept. Protein Res. 19(2), 162 (1982)

    PubMed  Google Scholar 

  14. Kolb, H.-A., Lauger, P., Bamberg, E.: J. Membrane Biol. 20, 133 (1975)

    Article  Google Scholar 

  15. Zingsheim, H. P., Neher, E.: Biophys. Chem. 2, 197 (1974)

    Article  PubMed  Google Scholar 

  16. DeFelice, L. J.: Int. Rev. Neurobiol. 20, 169 (1977)

    PubMed  Google Scholar 

  17. Sarges, R., Witkop, B.: Biochemistry 4, 2491 (1965)

    Article  Google Scholar 

  18. Fontana, A., Gross, E.: Peptides, Proc. of the 12th Eur. Peptide Symp., p. 229, 1972

    Google Scholar 

  19. Noda, K., Gross, E.: Chemistry and Biology of Peptides, (ed. Meienhofer, J.), p. 241, Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan 1972

    Google Scholar 

  20. Hunter, F. E., Jr., Schwartz, L. S.: Antibiotics, Vol. I: Mechanism of Action (ed. Gottlieb, D., Shaw, P. D.), p. 636, Springer-Verlag New York Inc., 1967

    Google Scholar 

  21. Urry, D. W.: Proc. Natl. Acad. Sci. USA 68, 672 (1971)

    PubMed  Google Scholar 

  22. Urry, D. W. et al.: ibid. 68, 1907 (1971)

    PubMed  Google Scholar 

  23. Urry, D. W.: Coformation of Biological Molecules and Polymers — The Jerusalem Symposia on Quantum Chemistry and Biochemistry, V, (eds. Bergman, E. D., Pullman, B.), p. 723, Jerusalem, Israel Academy of Sciences 1973

    Google Scholar 

  24. Ramachandran, G. N., Chandrasekharan, R.: Progress in Peptide Research — Volume II (ed. Lande, S.), p. 195, Gordon and Breach, Science Publishers, Inc., New York 1972

    Google Scholar 

  25. Ramachandran, G. N., Chandrasekaran, R.: Indian J. Biochem. Biophys. 9, 1 (1972)

    PubMed  Google Scholar 

  26. Urry, D. W. et al.: Ann. NY Acad. Sci. 264, 203 (1975)

    PubMed  Google Scholar 

  27. Veatch, W. R., Blout, E. R.: Biochemistry 13, 5257 (1974)

    Article  PubMed  Google Scholar 

  28. Weinstein, S. et al.: Proc. Natl. Acad. Sci. USA 76, 2402 (1979)

    Google Scholar 

  29. Bamberg, E., Apell, H.-J., Aples, H.: A. J. 74, 2402 (1977)

    Google Scholar 

  30. Sychev, S. V., Ivanov, V. T.: Membranes and Transport Vol. 2, (ed. Martonosi, A. N.), p. 301, Plenum Press, New York 1982

    Google Scholar 

  31. Ovchinnikov, Y. A., Ivanov, V. T.: Conformation in Biology (eds. Srinivasan, R., Sarma, R. H.), p. 155, Adenine Press, Guilderland, New York 1982

    Google Scholar 

  32. Urry, D. W.: The Enzymes of Biological Membranes (ed. Martonosi, A. N.), Plenum Press, New York, in press

    Google Scholar 

  33. Urry, D. W., Spisni, A., Khaled, M. A.: Biochem. Biophys. Res. Commun. 88(3), 940 (1979)

    Article  PubMed  Google Scholar 

  34. Urry, D. W. et al.: Int. J. Pept. Protein Res., 21, 16 (1983)

    PubMed  Google Scholar 

  35. Ohnishi, M. et al.: Biochem. Biophys. Res. Commun. 46, 313 (1972)

    Google Scholar 

  36. Urry, D. W.: Nuclear magnetic resonance and the conformation of membrane-active peptides. In: Enzymes of Biological Membranes, Vol. 1, (ed. Martonosi, A.), p. 31, Plenum Publishing Corp., New York 1976

    Google Scholar 

  37. Urry, D. W., Prased, K. U., Trapane, T. L.: Proc. Natl. Acad. Sci. USA 79, 390 (1982)

    PubMed  Google Scholar 

  38. Urry, D. W., Walker, J. T., Trapane, T. L.: J. Membr. Biol. 69, 225 (1982)

    Article  PubMed  Google Scholar 

  39. Urry, D. W., Trapane, T. L., Prasad, K. U.: Science, in press

    Google Scholar 

  40. Busath, D., Szabo, G.: Nature 294, 371 (1981)

    Article  PubMed  Google Scholar 

  41. Koeppe, R. E., II et al.: Nature (London) 279, 723 (1979)

    Article  PubMed  Google Scholar 

  42. Zwolinski, B. I., Eyring, H., Reese, C. E.: J. Phys. Chem. 53, 1426 (1949)

    Article  Google Scholar 

  43. Parlin, B., Eyring, H.: Ion Transport Across Membranes (ed. Clarke, H. T.), p. 103, Academic, New York 1954

    Google Scholar 

  44. Eyring, H., Urry, D. W.: Ber. Bunsenges. Phys. Chem. 67, 731 (1963)

    Google Scholar 

  45. Urry, D. W.: On the Molecular Structure and Ion Transport Mechanism of the Gramicidin Transmembrane Channel. In: Membranes and Transport, Vol. 2, (ed. Martonosi, A.), p. 285, Plenum Publishing Corporation, New York 1982

    Google Scholar 

  46. Urry, D. W., et al.: Proc. Natl. Acad. Sci. USA 77, 2028 (1980)

    PubMed  Google Scholar 

  47. Urry, D. W., et al.: J. Membr. Biol. 55, 29 (1980)

    Article  PubMed  Google Scholar 

  48. James, T. L., Noggle, J. H.: Proc. Natl. Acad. Sci. USA 62, 644 (1969)

    PubMed  Google Scholar 

  49. Urry, D. W., et al.: J. Phys. Chem. in press

    Google Scholar 

  50. Urry, D. W., et al.: in preparation

    Google Scholar 

  51. Venkatachalam, C. M., Urry, D. W.: J. Magn. Resonance 41, 313 (1980)

    Google Scholar 

  52. Henze, R., et al.: J. Membr. Biol. 64 (3), 233 (1982)

    Article  PubMed  Google Scholar 

  53. Venkatachalam, C. M., Urry, D. W.: J. Comput. Chem., in press

    Google Scholar 

  54. Momany, F. A., et al.: J. Phys. Chem. 78, 1595 (1974)

    Article  Google Scholar 

  55. Momany, F. A., et al.: ibid. 79, 2361 (1975)

    Article  Google Scholar 

  56. Venkatachalam, C. M., Urry, D. W.: J. Comput. Chem., in press

    Google Scholar 

  57. Myers, V. B., Haydon, D. A.: Biochim. Biophys. Acta 274, 313 (1972)

    PubMed  Google Scholar 

  58. Bamberg, E., Kolb, H.-A., Lauger, P.: in The Structural Basis of Membrane Function (ed. Hatefi, Y.), p. 143, Academic Press, New York 133–167

    Google Scholar 

  59. Eisenman, G., Sandblom, J., Neher, E.: Biophys. J. 22 (2), 307 (1978)

    PubMed  Google Scholar 

  60. Eisenman, G., Sandblom, J., Neher, E.: Metal-Ligand Interactions in Organic Chemistry and Biochemistry, Part 2, (eds. Pullman, B., Goldblum, N.), p. 1, D. Reidel, Dordrecht-Holland

    Google Scholar 

  61. Bamberg, E., Lauger, P.: J. Membrane Biol. 35, 351 (1977)

    Article  Google Scholar 

  62. Urry, D. W., et al.: J. Biol. Chem. 257, 6659 (1982)

    PubMed  Google Scholar 

  63. Urry, D. W., Trapane, T. L., Prasad, K. U.: Int. J. Quantum Chem.: Quantum Biology Symp. No. 9, 31 (1982)

    Google Scholar 

  64. Hinton, J. F., Turner, G. L., Millett, F. S.: J. Magnetic Res. 45, 42 (1981)

    Google Scholar 

  65. Rosseinsky, D. R.: Chem. Rev. 65, 467 (1965)

    Article  Google Scholar 

  66. Stokes, R. H.: J. Am. Chem. Soc. 86, 979 (1964)

    Article  Google Scholar 

  67. Noyes, R. M.: ibid. 84, 513 (1962)

    Article  Google Scholar 

  68. Urry, D. W.: Frontiers of Biological Energetics, Vol. 2 (eds. Dutton, P. L., Leigh, J., Scarpa, A.), p. 1227, Academic Press, New York 1978

    Google Scholar 

  69. Potter, J. D., Gergely, J.: J. Biol. Chem. 250, 4628 (1975)

    PubMed  Google Scholar 

  70. Cox, J. A., Wnuk, W., Stein, E. A.: Calcium Binding Proteins and Calcium Function (eds. Wasserman, R. H., Corradion, R. A., Carafoli, E., Kretsinger, R. H., MacLennan, D. H., Siegel, F. L.), p. 266, Elsevier/North Holland, New York 1977

    Google Scholar 

  71. Krasne, S., Eisenman, G.: Membranes, Vol. 2, Lipid Bilayer And Antibiotics (ed. Eisenman, G.), p. 273, Marcel Dekker, Inc. New York 1973

    Google Scholar 

  72. Lauger, P.: J. Membrane Biol. 57, 163 (1980)

    Article  Google Scholar 

  73. Urry, D. W., Alonso-Romanowski, S., Bradley, R. J.: in preparation

    Google Scholar 

  74. Stefanac, Z., Simon, W.: Chimia (Switzerland) 20, 436 (1966)

    Google Scholar 

  75. Pioda, L. A. R., Stankova, V., Simon, W.: Anal. Lett. 7, 665 (1969)

    Google Scholar 

  76. Simon, W., Morf, W.: Membranes — A Series of Advances, Vol. 2, p. 29, (ed. Eisenman, G., Dekker, New York 1973

    Google Scholar 

  77. Dzidic, I., Kebarle, P.: J. Phys. Chem. 74, 1466 (1970)

    Article  Google Scholar 

  78. Arshadi, M., Yamdagni, R., Kebarle, P.: ibid. 74, 1475 (1970)

    Article  Google Scholar 

  79. Kistenmacher, H., Popkie, H., Clementi, E.: J. Chem. Phys. 61, 799 (1974)

    Article  Google Scholar 

  80. Kistenmacher, H., Popkie, H., Clementi, E.: ibid. 58, 1689 (1973)

    Article  Google Scholar 

  81. Mezei, M., Beveridge, D. L.: ibid. 74 (1), 622 (1981)

    Article  Google Scholar 

  82. Mezei, M., Beveridge, D. L.: ibid. 74 (12), 6902 (1981)

    Article  Google Scholar 

  83. Balasubramanian, D., Misra, B. C.: Biopolymers 14, 1019 (1975)

    Article  PubMed  Google Scholar 

  84. Pressman, B. C.: Fed. Proc. 32, 1698 (1973)

    PubMed  Google Scholar 

  85. Pinkerton, M., Steinruf, L. K., Dawkins, K.: Biochem. Biophys. Res. Commun. 35, 512 (1969)

    Article  PubMed  Google Scholar 

  86. Mueller, P., et al.: J. Phys. Chem. 67, 534 (1963)

    Google Scholar 

  87. Lauger, P.: Science 178, 24 (1972)

    PubMed  Google Scholar 

  88. Stark, G., Benz, R.: J. Membr. Biol. 5, 133 (1971)

    Article  Google Scholar 

  89. Ketterer, B., Neumcke, B., Lauger, P.: ibid. 5, 225 (1971)

    Article  Google Scholar 

  90. Neumcke, B., Lauger, P.: Biophys. J. 9, 1160 (1969)

    PubMed  Google Scholar 

  91. Lauger, P., Stark, G.: Biochim. Biophys. Acta 211, 458 (1970)

    PubMed  Google Scholar 

  92. Stark, G., et al.: Biophys. J. 11, 981 (1971)

    PubMed  Google Scholar 

  93. Krasne, S., Eisenman, G., Szabo, G.: Science 174, 412 (1971)

    PubMed  Google Scholar 

  94. Shemyakin, M. M., et al.: Experimentia 21, 548 (1965)

    Article  Google Scholar 

  95. Urry, D. W.: J. Phys. Chem. 72, 3035 (1968)

    Article  Google Scholar 

  96. Ohnishi, M., Urry, D. W.: Biochem. Biophys. Res. Commun. 36, 194 (1969)

    Article  PubMed  Google Scholar 

  97. Urry, D. W., Ohnishi, M.: Spectroscopic Approaches to Biomolecular Conformation, p. 263, (ed. Urry, D. W.), American Medical Association Press, Chicago, Illinois 1970

    Google Scholar 

  98. Ohnishi, M., Urry, D. W.: Science 168, 1091 (1970)

    PubMed  Google Scholar 

  99. Mayers, D. F., Urry, D. W.: J. Am. Chem. Soc. 94, 77 (1972)

    Article  PubMed  Google Scholar 

  100. Neupert-Laves, K., Dobler, M.: Helv. Chim. Acta 58, 432 (1975)

    Article  PubMed  Google Scholar 

  101. Urry, D. W.: Enzymes of Biological Membranes, Vol. 1, (ed. Martonosi, A.), p. 31, Plenum Publishing Corp., New York, New York 1976

    Google Scholar 

  102. Plattner, PL. A., et al.: Helv. Chim. Acta 46, 927 (1963)

    Google Scholar 

  103. Dobler, M., Dunitz, J. D., Krajewski, J.: J. Mol. Biol. 42, 603 (1969)

    Article  PubMed  Google Scholar 

  104. Shemyakin, M. M., et al.: J. Membr. Biol. 1, 402 (1969)

    Article  Google Scholar 

  105. Bystrov, V. F., ett al.: Eur. J. Biochem. 78, 63 (1977)

    Article  PubMed  Google Scholar 

  106. Benz, R.: J. Membr. Biol. 43, 367 (1978)

    Article  PubMed  Google Scholar 

  107. Fiedler, U., Ruzicka, J.: Anal. Chim. Acta 67, 179 (1973)

    Article  Google Scholar 

  108. Ivanov, V. T.: Ann. N.Y. Acad. Sci. 264, 221 (1975)

    PubMed  Google Scholar 

  109. Grell, E., Funck, Th.: J. Supramol. Structure 1, 307 (1973)

    Article  Google Scholar 

  110. Funck, Von Th., Eggers, F., Grell, E.: Chimia 26, 637 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this chapter

Cite this chapter

Urry, D.W. (1985). Chemical basis of ion transport specificity in biological membranes. In: Biomimetic and Bioorganic Chemistry. Topics in Current Chemistry, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-15136-2_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-15136-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15136-4

  • Online ISBN: 978-3-540-39248-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics