Skip to main content

The n-Component KP Hierarchy and Representation Theory

  • Chapter
Important Developments in Soliton Theory

Part of the book series: Springer Series in Nonlinear Dynamics ((SSNONLINEAR))

Abstract

The remarkable link between the soliton theory and the group GL,,c,was discovered in the early 1980s by Sato [S] and developed, making use of the spinor formalism, by Date, Jimbo, Kashiwara and Miwa [DJKM1,2,3], [JM]. The basic object that they considered is the KP hierarchy of partial differential equations, which they study through a sequence of equivalent formulations that we describe below. The first formulation is a deformation (or Lax) equation of a formal pseudo-differential operator \(L = \partial + {{u}_{1}}{{\partial }^{{ - 1}}} + {{u}_{2}}{{\partial }^{{ - 2}}} + \ldots\) introduced in [S] and [W1]:

$$\frac{{\partial L}}{{\partial {{x}_{n}}}} = [{{B}_{n}},L], n = 1,2, \ldots .$$
(0.1.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ablowitz and P.A. Clarkson, Solitons,nonlinear evolution equations and inverse scat-tering, London Math. Soc. Lecture Note Series 149, Cambridge University Press, 1991.

    Google Scholar 

  2. M. Boiti, J. Leon, L. Martina and F. Pempinelli, Scattering of localized solitons in the plane, Phys. Lett. 132A (1988), 432–439.

    MathSciNet  ADS  Google Scholar 

  3. B.A. Dubrovin, Completely integrable Hamiltonian systems related to matrix operators, and abelian manifolds, Funct. Anal. Appl. 11:4 (1977), 28–41.

    MathSciNet  MATH  Google Scholar 

  4. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Operator approach to the KadomtsevPetviashvili equation. Transformation groups for soliton equations. III, J. Phys. Soc. Japan 50 (1981), 3806–3812.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. 18 (1982), 1077–1110.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in: Nonlinear integrable systems—classical theory and quantum theory eds M. Jimbo and T. Miwa, World Scientific, 1983, 39–120.

    Google Scholar 

  7. L.A. Dickey, On Segal-Wilson’s definition of the r-function and hierarchies of AKNS-D and mcKP, preprint 1991.

    Google Scholar 

  8. I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23–66.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A.S. Fokas and P.M. Santini, Dromions and boundary value problem for the Davey-Stewartson 1 equation, Physics D44 (1990), 99–130.

    MathSciNet  ADS  Google Scholar 

  10. R. Hirota, Direct method in soliton theory„ in Solitons, eds. R.K. Bullough and P.J. Caudrey, Springer Verlag, 1980.

    Google Scholar 

  11. J. Hietarinta, R. Hirota, Multidromion solutions of the Davey-Stewartson equation, Phys. Lett A 145 (1990), 237–244.

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Hernandes Heredero, L. Martinez Alonso and E. Medina Reus, Fusion and fission of dromions in the Davey-Stewartson equation, Phys. Lett. A 152 (1991), 37–41.

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943–1001.

    Article  MathSciNet  MATH  Google Scholar 

  14. V.G. Kac, Infinite dimensional Lie algebras, Progress in Math., vol. 44, Brikhäuser, Boston, 1983; 2nd ed., Cambridge Univ. Press, 1985; 3d ed., Cambridge Univ. Press, 1990.

    Google Scholar 

  15. V.G. Kac, D. A. Kazhdan, J. Lepowsky, and R.L. Wilson, Realization of the basic representations of the Euclidean Lie algebras, Adv. in Math. 42 (1981), 83–112.

    Article  MathSciNet  MATH  Google Scholar 

  16. V.G. Kac and D.H. Peterson, 112 constructions of the basic representation of the loop group of Es, in Proc. of the Symposium “Anomalies, Geometry, Topology”, Argonne, eds. W.A. Bardeen, A.R. White, World Scientific, 1985, pp. 276–298.

    Google Scholar 

  17. V.G. Kac and D.H. Peterson, Lectures on the infinite wedge representation and the MKP hierarchy, Sem. Math. Sup., vol. 102, Presses Univ. Montreal, Montreal, 1986, pp. 141–184.

    Google Scholar 

  18. V.G. Kac and A.K. Raina, Bombay lectures on highest weight representations of infinite- dimen-sional Lie algebras, Advanced Ser. in Math. Phys., vol. 2, World Scientific, 1987.

    Google Scholar 

  19. V.G. Kac and M. Wakimoto, Exceptional hierarchies of soliton equations, Proc. Symp. Pure Math. 49 (1989), 191–237.

    MathSciNet  Google Scholar 

  20. S. Novikov, S. Manakov, L. Pitaevskii, V. Zakharov, Theory of solitons, Consultants Bureau, 1984.

    Google Scholar 

  21. D.H. Peterson and V.G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), 1778–1782.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann mani-folds, Res. Inst. Math. Sci. Kokyuroku 439 (1981), 30–46.

    Google Scholar 

  23. G. Segal and G. WilsonLoop groups and equations of KdV type, Inst. Hautes Etudes Sci. Publ. Math. 63 (1985), 1–64.

    MathSciNet  Google Scholar 

  24. T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math. 83 (1986), 333–382.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. T.H.R. Skyrme, Kinks and the Dirac equation, J. Math. Phys. 12 (1971), 1735–1743.

    Article  MathSciNet  ADS  Google Scholar 

  26. A.P.E. ten Kroode and M.J. Bergvelt, The homogeneous realization of the basic representation of Aí 11 and the Toda lattice, Lett. Math. Phys. 12 (1986), 139–147.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. F. ten Kroode and J. van de Leur, Bosonic and fermionic realizations of the affine algebra glu, Comm. Math. Phys. 137 (1991), 67–107.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. K. Ueno and K. Takasaki, Toda lattice hierarchy, Adv. stud. Pure Math., vol. 4, North-Holland, 1984, 1–95.

    Google Scholar 

  29. G. Wilson, On two construction of conservation laws for Lax equations, The Quarterly Journal of Math. 32 (1981), 491–512.

    Article  MATH  Google Scholar 

  30. G. Wilson, The r-function of the AKNS equations, preprint, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kac, V.G., van de Leur, J.W. (1993). The n-Component KP Hierarchy and Representation Theory. In: Fokas, A.S., Zakharov, V.E. (eds) Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58045-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58045-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63450-5

  • Online ISBN: 978-3-642-58045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics