Skip to main content

The p70 S6 Kinase Integrates Nutrient and Growth Signals to Control Translational Capacity

  • Chapter
Signaling Pathways for Translation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 26))

Abstract

The p70 S6 kinase was one of the first insulin/mitogen activated protein (Ser/Thr) kinases to be described. The kinase was purified to homogeneity over a decade ago, its molecular structure defined and the enzymology of its phosphorylation of the 40 S subunit protein S6 well worked out, both in vitro and in vivo. By contrast, the cellular function of the kinase, the mechanisms of activation and the nature of the signal transduction elements upstream have been elucidated only within the last several years. This review will describe our current understanding of the biologic role of the p70 kinase as gleaned from experiments in mammalian cell culture, and through gene deletion in mouse and Drosophila, as well as the regulation of the p70 kinase and the nature of the signal transduction pathways that funnel into the control of this ubiquitous signal-responsive ribosomal protein kinase

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14:483–510

    Article  PubMed  CAS  Google Scholar 

  • Akimoto K, Nakaya M, Yammanaka T, Tanaka J, Matsuda S, Weng QP, Avruch J, Ohno S (1998) Atypical protein kinase Clambda binds and regulates p70 S6 kinase. Biochem J 335:417–424

    PubMed  CAS  Google Scholar 

  • Albers MW, Williams RT, Brown EJ, Tanaka A, Hall FL, Schreiber S (1993) FKPB-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin DI-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem 268:22825–22829

    PubMed  CAS  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996a) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  • Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P (1996b) Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399:333–338

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997a) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B. Curr Biol 7:261–269

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M (1997b) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila STPK61 kinase. Curr Biol 7:776–789

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J (1997c) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8:69–81

    Article  Google Scholar 

  • Alexander MC, Kowaloff EM, Witters LA, Dennihy DT, Avruch J (1979) Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase. J Biol Chem 254:8052–8056

    PubMed  CAS  Google Scholar 

  • Amaldi F, Pierandrei-Amaldi P (1997) TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog Mol Sub cell Biol 18:1–17

    Article  CAS  Google Scholar 

  • Avruch J, Leone GR, Martin DB (1976) Effects of epinephrine and insulin on phosphopeptide metabolism in adipocytes. J Biol Chem 251:1511–1515

    PubMed  CAS  Google Scholar 

  • Avruch J, Witters LA, Alexander MC, Bush MA (1978) The effects of insulin and glucagon on the phosphorylation of hepatic cytoplasmic peptides. J Biol Chem 253:4754–4761

    PubMed  CAS  Google Scholar 

  • Avruch J, Zhang XF, Kyriakis JM (1994) Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19:279–283

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Currie R, Armstrong CG, Avruch J, Alessi DR (1999) Evidence that 3-phosphoinositide- dependent protein kinase-1 mediates phosphorylation of p70 S6 kinase in vivo at Thr-412 as well as Thr-252. J Biol Chem 274:37400–37406

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Biondi RM, Cheung PC, Casamaor A, Deak M, Alessi DR (2000) A PDKI docking site is required for the phosphorylation of KCz and PRK2 by PDK1. J Biol Chem (in press)

    Google Scholar 

  • Ballou LM, Jeno P, Thomas G (1988) Protein phosphatase 2 A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem 263:1188–1194

    PubMed  CAS  Google Scholar 

  • Bandi HR, Ferrari S, Krieg J, Meyer HE, Thomas G (1993) Identification of 40S ribosomal protein S6 phosphorylation sites in Swiss mouse 3T3 fibroblasts stimulated with serum. J Biol Chem 268:4530–4533

    PubMed  CAS  Google Scholar 

  • Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J (1990) Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci USA 87:8550–8554

    Article  PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42

    PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Benjamin WB, Singer I (1975) Actions of insulin, epinephrine, and dibutyryl cyclic adenosine 5’-monophosphate on fat cell protein phosphorylations. Cyclic adenosine 5’-monophosphate dependent and independent mechanisms. Biochemistry 14:3301–3309

    Article  PubMed  CAS  Google Scholar 

  • Berset C, Trachsel H, Altmann M (1998) The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factoreIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:4264–4269

    Article  PubMed  CAS  Google Scholar 

  • Biberman Y, Meyuhas O (1997) Substitution of just five nucleotides at and around the transcription start site of rat beta-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Lett 405:333–336

    Article  PubMed  CAS  Google Scholar 

  • Biberman Y, Meyuhas O (1999) TOP mRNAs are translation ally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate. FEBS Lett 456:357–360

    Article  PubMed  CAS  Google Scholar 

  • Blenis J, Erikson RL (1986) Stimulation of ribosomal protein S6 kinase activity by pp60v-src or by serum: dissociation from phorbol ester-stimulated activity. Proc Natl Acad Sci USA 83:1733–1737

    Article  PubMed  CAS  Google Scholar 

  • Brennan P, Babbage JW, Thomas G, Cantrell D (1999) p70(s6k) integrates phosphatidylinositol3- kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol Cell Biol 19:4729–4738

    PubMed  CAS  Google Scholar 

  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber S (1995) Control of the p70 kinase by kinase activity of FRAP in vivo. Nature 377:441–446

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  PubMed  CAS  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  PubMed  CAS  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulaTORs p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Campbell LE, Wang X, Proud CG (1999) Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem J 344:433–441

    Article  PubMed  CAS  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CT, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Cheatham B, Vlahos CT, Cheatham L, Wang L, Blenis J, Kahn CR (1994) Phosphatidylinositol 3- kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14:4902–4911

    PubMed  CAS  Google Scholar 

  • Cheatham L, Monfar M, Chou MM, Blenis J (1995) Structural and functional analysis of pp70S6 k. Proc Natl Acad Sci USA 92:11696–11700

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Peterson RT, Schreiber SL (1998) Alpha 4 associates with protein phosphatases 2 A, 4, and 6. Biochem Biophys Res Commun 247:827–832

    Article  PubMed  CAS  Google Scholar 

  • Chou MM, Blenis J (1996) The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Racl. Cell 85:573–583

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Kuo CT, Crabtree GR, Blenis J (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kD S6 protein kinases. Cell 69:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J (1994) PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370:71–75

    Article  PubMed  CAS  Google Scholar 

  • Cobb MH, Rosen OM (1983) Description of a protein kinase derived from insulin-treated 3T3- L1 cells that catalyzes the phosphorylation of ribosomal protein S6 and casein. J Biol Chem 258:12472–12481

    PubMed  CAS  Google Scholar 

  • Coffer PJ, Woodgett JR (1994) Differential subcellular localisation of two isoforms of p70 S6 protein kinase. Biochem Biophys Res Commun 198:780–786

    Article  PubMed  CAS  Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244

    Article  PubMed  CAS  Google Scholar 

  • De Groof RP, Ballou L, Sassone-Corsi P (1994) Positive regulation of the cAMP-Responsive activaTOR CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell 79:81–91

    Article  Google Scholar 

  • Dedhar S (2000) Cell-substrate interactions and signaling through ILK. Curr Opin Cell Biol 12:250–256

    Google Scholar 

  • Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95:11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Dennis PB, Pullen N, Kozma SC, Thomas G (1996) The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 16:6242–6251

    PubMed  CAS  Google Scholar 

  • DePhilip RM, Chadwick DE, Ignotz RA, Lynch WE, Lieberman I (1979) Rapid stimulation by insulin of ribosome synthesis in cultured chick embryo fibroblasts. Biochemistry 18:4812–4817

    Article  PubMed  CAS  Google Scholar 

  • DePhilip RM, Rudert WA, Lieberman I (1980) Preferential stimulation of ribosomal protein synthesis by insulin and in the absence of ribosomal and messenger ribonucleic acid formation. Biochemistry 19:1662–1669

    Article  PubMed  CAS  Google Scholar 

  • Di Como CT, Arndt KT (1996) Nutrients, via the TOR proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904–1916

    Article  PubMed  Google Scholar 

  • Dumont FT, SU Q (1995) Mechanism of action of the immunosuppressant rapamycin. Life Sci 58:373–395

    Article  CAS  Google Scholar 

  • Edelmann HM, Kuhne C, Petritsch C, Ballou LM (1996) Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in Swiss mouse 3T3 fibroblasts. J Biol Chem 271:963–971

    Article  PubMed  CAS  Google Scholar 

  • Edgar B (1999) From small flies come big discoveries about size control. Nat Cell Biol 1:E191–193

    Article  PubMed  CAS  Google Scholar 

  • Erikson E, Maller JL (1985) A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci USA 82:742–746

    Article  PubMed  CAS  Google Scholar 

  • Erikson E, Maller JL (1986) Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J Biol Chem 261:350–355

    PubMed  CAS  Google Scholar 

  • Erikson E, Maller JL (1989) In vivo phosphorylation and activation of ribosomal protein S6 kinases during Xenopus oocyte maturation. J Biol Chem 264:13711–13717

    PubMed  CAS  Google Scholar 

  • Erikson E, Maller JL (1991) Purification and characterization of ribosomal protein S6 kinase I from Xenopus eggs. J Biol Chem 266:5249–5255

    PubMed  CAS  Google Scholar 

  • Ferrari S, Bandi HR, Hofsteenge J, Bussian BM, Thomas G (1991) Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J Biol Chem 266:22770–227705

    PubMed  CAS  Google Scholar 

  • Ferrari S, Bannwarth W, Morley SJ, Totty NF, Thomas G (1992) Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci USA 89:7282–7286

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Pearson RB, Siegmann M, Kozma SC, Thomas G (1993) The immunosuppressant rapamycin induces inactivation of p70s6 k through dephosphorylation of a novel set of sites. J Biol Chem 268:16091–16094

    PubMed  CAS  Google Scholar 

  • Flotow H, Thomas G (1992) Substrate recognition determinants of ribosomal protein S6 kinase I from Xenopus eggs. J Biol Chem 267:3074-3078

    Google Scholar 

  • Forn J, Greengard P (1976) Regulation by lipolytic and antilipolytic compounds of the phosphorylation of specific proteins in isolated intact fat cells. Arch Biochem Biophys 176:721–733

    Article  PubMed  CAS  Google Scholar 

  • Fox HL, Kimball SR, Jefferson LS, Lynch CJ (1998) Amino acids stimulate phosphorylation of p70S6 k and organization of rat adipocytes into multicellular clusters. Am J Physiol 274:C206–213

    PubMed  CAS  Google Scholar 

  • Franco R, Rosenfeld MG (1990) Hormonally inducible phosphorylation of a nuclear pool of ribosomal protein S6. J Biol Chem 265:4321–4325

    PubMed  CAS  Google Scholar 

  • Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev 12:502–513

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  PubMed  CAS  Google Scholar 

  • Gout I, Minami T, Hara K, Tsujishita Y, Filonenko V, Waterfield MD, Yonezawa K (1998) Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J Biol Chem 273:30061–30064

    Article  PubMed  CAS  Google Scholar 

  • Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price OJ, Avruch J, Woodgett JR (1991) Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol 11:5541–5550

    PubMed  CAS  Google Scholar 

  • Han JW, Pearson RB, Dennis PB, Thomas G (1995) Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70s6 k by inducing dephosphorylation of the same subset of sites. J Biol Chem 270:21396–21403

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Sakaue H, Kotani K, Kotani K, Kojima A, Waterfield MD, Kasuga M (1995) Normal activation of p70 S6 kinase by insulin in cells overexpressing dominant negative 85kD subunit of phosphoinositide 3-kinase. Biochem Biophys Res Commun 208:735–741

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J (1997) Regulation of eIF-4E BPI phosphorylation by mTOR. J Biol Chem 272:26457–26463

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BPI through a common effecTOR mechanism. J Biol Chem 273:14484–14494

    Article  PubMed  CAS  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the TOR proteins. Proc Natl Acad Sci USA 96:14866–14870

    Article  PubMed  CAS  Google Scholar 

  • Haselbacher GK, Humbel RE, Thomas G (1979) Insulin-like growth facTOR: insulin or serum increase phosphorylation of ribosomal protein S6 during transition of stationary chick embryo fibroblasts into early G1 phase of the cell cycle. FEBS Lett 100:185–190

    Article  PubMed  CAS  Google Scholar 

  • Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ, Terada N (1999) Amino acid-dependent control of p70(s6 k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem 274:1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Inui S, Kuwahara K, Mizutani J, Maeda K, Kawai T, Nakayasu H, Sakaguchi N (1995) Molecular cloning of a cDNA clone encoding a phosphoprotein component related to the Ig recepTORmediated signal transduction. J Immunol 154:2714–2723

    PubMed  CAS  Google Scholar 

  • Inui S, Sanjo H, Maeda K, Yamamoto H, Miyamoto E, Sakaguchi N (1998) Ig recepTOR binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2 A. Blood 92:539–546

    PubMed  CAS  Google Scholar 

  • Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K (1999) Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 274:34493–34498

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman T, Marks AR (1993) Rapamycin-FKBP 12 blocks proliferation, induces differentiation and inhibits cdc2 kinase activity in a myogenic cell line. J Biol Chem 268:25385–25388

    PubMed  CAS  Google Scholar 

  • Jeffries HBJ, Reinhard C, Kozma SC, Thomas G (1994) Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 91:4441–4445

    Article  Google Scholar 

  • Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Broach JR (1999) TOR proteins and protein phosphatase 2 A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18:2782–2792

    Article  PubMed  CAS  Google Scholar 

  • Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  • Kisilevsky R, Treloar MA, Weiler L (1984) Ribosome conformational changes associated with protein S6 phosphorylation. J Biol Chem 259:1351–1356

    PubMed  CAS  Google Scholar 

  • Koh H, Jee K, Lee B, Kim J, Kim D, Yun YH, Kim JW, Choi HS, Chung J (1999) Cloning and characterization of a nuclear S6 kinase, 56 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene 18:5115–5119

    Article  PubMed  CAS  Google Scholar 

  • Kozma SC, Lane HA, Ferrari S, Luther H, Siegmann M, Thomas G (1989) A stimulated S6 kinase from rat liver: identity with the mitogen activated S6 kinase of 3T3 cells. EMBO J 8:4125–4132

    PubMed  CAS  Google Scholar 

  • Kozma SC, Ferrari 5, Bassand P, Siegmann M, Totty N, Thomas G (1990) Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc Natl Acad Sci USA 87:7365–7369

    Article  PubMed  CAS  Google Scholar 

  • Kreig J, Hofsteenge J, Thomas G (1988) Identification of the 40S ribosomal protein S6 phosphorylation sites induced by cyclohexamide. J Biol Chem 263:11473

    Google Scholar 

  • Kruse C, Johnson SP, Warner JR (1985) Phosphorylation of the yeast equivalent of ribosomal protein S6 is not essential for growth. Proc Natl Acad Sci USA 82:7515–7519

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homologue required for G 1 progression. Cell 73:585–596

    Article  PubMed  CAS  Google Scholar 

  • Lambertsson A (1998) The minute genes in Drosophila and their molecular functions. Adv Genet 38:69–134

    Article  PubMed  CAS  Google Scholar 

  • Lane HA, Morley SJ, Doree M, Kozma SC, Thomas G (1992) Identification and early activation of a Xenopus laevis p70s6k following progesterone-induced meiotic maturation. EMBO J 11:1743–1749

    PubMed  CAS  Google Scholar 

  • Lane HA, Fernandez A, Lamb NJ, Thomas G (1993) p70s6k function is essential for G1 progression. Nature 363:170–172

    Article  PubMed  CAS  Google Scholar 

  • Lee-Fruman KK, Kuo CJ, Lippincott J, Terada N, Blenis J (1999) Characterization of S6K2, a novel kinase homologueous to S6K1. Oncogene 18:5108–114

    Article  PubMed  CAS  Google Scholar 

  • Leibiger IB, Leibiger B, Moede T, Berggren PO (1998) Exocytosis of insulin promotes insulin gene transcription via the insulin recepTOR/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell 1:933–938

    Article  PubMed  CAS  Google Scholar 

  • Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, Lawrence JC Jr (1994) PHAS-I as a link between mitogen -activated protein kinase and translation initiation. Science 266:653–656

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17(5):1236–1247

    Article  PubMed  CAS  Google Scholar 

  • Martin-Perez J, Thomas G (1983) Ordered phosphorylation of 40S ribosomal protein S6 after serum stimulation in quiescent 3T3 cells. Proc Natl Acad Sci USA 80:926–930

    Article  PubMed  CAS  Google Scholar 

  • Martin-Perez J, Siegmann M, Thomas G (1984) EGF, PGF2, and insulin induces the phosphorylation of identical S6 pep tides in Swiss mouse 3T3 cells: effects of cAMP on early sites of phosphorylation. Cell 36:287–294

    Article  PubMed  CAS  Google Scholar 

  • Meyuhas D, Avri P, Sharma S (1996) Translational control. In: Hershey JWB, Mathews MB, Sonnberg N (eds) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 363

    Google Scholar 

  • Ming XF, Burgering BM, Wennstrom S, Claesson-Welsh L, Heldin CH, Bos JL, Kozma SC, Thomas G (1994) Activation of p70/p85 S6 kinase by a pathway independent of p21ras. Nature 371:426–429

    Article  PubMed  CAS  Google Scholar 

  • Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G (1999) Drosophila S6 kinase: a regulaTOR of cell size. Science 285:2126–2129

    Article  PubMed  CAS  Google Scholar 

  • Morice W, Wiederrecht G, Brunn G, Siekierka JJ, Abraham RT (1993) Rapamycin inhibition of Interleukin-2-dependent p33 and p34 kinase activation in T Lymphocytes. J Biol Chem 268:22737–22745

    PubMed  CAS  Google Scholar 

  • Moser BA, Dennis PB, Pullen N, Pearson RB, Williamson NA, Wettenhall RE, Kozma SC, Thomas G (1997) Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol 17:5648–5655

    PubMed  CAS  Google Scholar 

  • Mothe-Satney I, Yang D, Fadden P, Haystead TA, Lawrence JC Jr (2000) Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol 20:3558–3567

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay NK, Price DJ, Kyriakis JM, Pelech S, Sanghera J, Avruch J (1992) An array of insulin-activated, proline-directed serine/threonine protein kinases phosphorylate the p70 S6 kinase. J Biol Chem 267:3325–3335

    PubMed  CAS  Google Scholar 

  • Murata K, Wu J, Brautigan DL (1997) B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase. Proc Natl Acad Sci USA 94:10624–10629

    Article  PubMed  CAS  Google Scholar 

  • Nanahoshi M, Nishiuma T, Tsujishita Y, Hara K, Inui S, Sakaguchi N, Yonezawa K (1998) Regulation of protein phosphatase 2 A catalytic activity by alpha4 protein and its yeast homologue Tap42. Biochem Biophys Res Commun 251:520–526

    Article  PubMed  CAS  Google Scholar 

  • Nanahoshi M, Tsujishita Y, Tokunaga C, Inui S, Sakaguchi N, Hara K, Yonezawa K (1999) Alpha4 protein as a common regulaTOR of type 2A-related serinelthreonine protein phosphatases. FEBS Lett 446:108–112

    Article  PubMed  CAS  Google Scholar 

  • Nemenoff RA, Gunsalus JR, Avruch J (1986) An insulin-stimulated (ribosomal S6) protein kinase from soluble extracts of H4hepatoma cells. Biochem Biophys 245:196–203

    Article  CAS  Google Scholar 

  • Neufeld TP, Edgar BA (2000) Connections between growth and the cell cycle. Curr Opin Cell Biol 10:784–790

    Article  Google Scholar 

  • Nielsen PJ, Thomas G (1982) Increased phosphorylation of ribosomal protein S6 during meiotic maturation of Xenopus oocytes. Proc Natl Acad Sci USA 79:2937–2941

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Ohsumi Y (1998) TOR, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    Article  PubMed  CAS  Google Scholar 

  • Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree G, Roberts J (1994) Interleukin-2-mediated elimination of the p27 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372:570–573

    Article  PubMed  CAS  Google Scholar 

  • Novak-Hofer I, Thomas G (1984) An activated S6 kinase in extracts from serum- and epidermal growth facTOR-stimulated Swiss 3T3 cells. J Biol Chem 259:5995–6000

    PubMed  CAS  Google Scholar 

  • Oldham S, Monyagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14:2689–2694

    Article  PubMed  CAS  Google Scholar 

  • Papst PJ, Sugiyama H, Nagasawa M, Lucas JJ, Maller JL, Terada N (1998) Cdc2-cyclin B phosphorylates p70 S6 kinase on Ser411 at mitosis. J Biol Chem 273:15077–15084

    Article  PubMed  CAS  Google Scholar 

  • Parekh DB, Ziegler W, Parker PJ (2000) Multiple pathways control protein kinase C phosphorylation. EMBO J 19:496–503

    Article  PubMed  CAS  Google Scholar 

  • Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulaTOR of 5’-cap function Nature 371:762–767

    Article  PubMed  CAS  Google Scholar 

  • Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, Thomas G (1995) The principal target of rapamycin-induced p70s6 k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14:5279–5287

    PubMed  CAS  Google Scholar 

  • Pelech SL, Olwin BB, Krebs EG (1986) Fibroblast growth factor treatment of Swiss 3T3 cells activates a subunit S6 kinase that phosphorylates a synthetic peptide substrate. Proc Natl Acad Sci USA 83:5968–5972

    Article  PubMed  CAS  Google Scholar 

  • Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC (1997) Disruption of the p70(s6k)/p85(s6 k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17:6649–6659

    Google Scholar 

  • Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2 A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycin associated protein. Proc Natl Acad Sci USA 96:4438–4442

    Article  PubMed  CAS  Google Scholar 

  • Pierce MW, Palmer JL, Keutmann HT, Hall TA, Avruch J (1982) The insulin-directed phosphorylation site on ATP-citrate lyase is identical with the site phosphorylated by the cAMP-dependent protein kinase in vitro. J Biol Chem 257:10681–10686

    PubMed  CAS  Google Scholar 

  • Price DJ, Nemenoff RA, Avruch J (1989) Purification of a hepatic S6 kinase from cycloheximide-treated Rats. J Biol Chem 264:13825–13833

    PubMed  CAS  Google Scholar 

  • Price DJ, Gunsalus JR, Avruch J (1990) Insulin activates a 70-kDa S6 kinase through serine/ threonine-specific phosphorylation of the enzyme polypeptide. Proc Natl Acad Sci USA 87:7944–7948

    Article  PubMed  CAS  Google Scholar 

  • Price OJ, Mukhopadhyay NK, Avruch J (1991) Insulin-activated protein kinases phosphorylate a pseudosubstrate synthetic peptide inhibitor of the p70 S6 kinase. J Biol Chem 266:16281–16284

    PubMed  CAS  Google Scholar 

  • Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE (1992) Rapamycin-induced inhibition of the 70- kilodalton S6 protein kinase. Science 257:973–977

    Article  PubMed  CAS  Google Scholar 

  • Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G (1998) Phosphorylation and activation of p70s6 k by PDK1. Science 279:707–710

    Article  PubMed  CAS  Google Scholar 

  • Radimerski T, Mini T, Schneider U, Wettenhall RE, Thomas G, Jeno P (2000) Identification of insulin-induced sites of ribosomal protein S6 phosphorylation in Drosophila melanogaster. Biochemistry 39:5766–5774

    Article  PubMed  CAS  Google Scholar 

  • Reinhard C, Thomas G, Kozma SC (1992) A single gene encodes two isoforms of the p70 S6 kinase: activation upon mitogenic stimulation. Proc Natl Acad Sci USA 89:4052–4056

    Article  PubMed  CAS  Google Scholar 

  • Reinhard C, Fernandez A, Lamb NJC, Thomas G (1994) Nuclear localization of p85: functional requirement for entry into S phase. EMBO J 13:1557–1565

    PubMed  CAS  Google Scholar 

  • Romanelli A, Martin KA, Toker A, Blenis J (1999) p70 S6 kinase is regulated by protein kinase Czeta and participates in a phosphoinositide 3-kinase-regulated signalling complex. Mol Cell Biol 19:2921–2928

    PubMed  CAS  Google Scholar 

  • Sato F, Ignotz GG, Ignotz RA, Gansler T, Tsukada K, Lieberman I (1981) On the mechanism by which insulin stimulates protein synthesis in chick embryo fibroblasts. Biochemistry 20:5550–5556

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Beck T, Koller A, Kunz J, Hall MN (1998) The TOR nutrient signalling pathway phosphorylates NPRI and inhibits turnover of the tryptophan permease. EMBO J 17:6924–6931

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287

    Article  PubMed  CAS  Google Scholar 

  • Schwab MS, Kim SH, Terada N, Edfjall C, Kozma SC, Thomas G, Maller JL (1999) p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol Cell Biol 19:2485–2494

    PubMed  CAS  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7777

    Article  PubMed  CAS  Google Scholar 

  • Shigemitsu K, Tsujishita Y, Hara K, Nanahoshi M, Avruch J, Yonezawa K (1999a) Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 274:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Shigemitsu K, Tsujishita Y, Miyake H, Hidayat S, Tanaka N, Hara K, Yonezawa K (1999b) Structural requirement of leucine for activation of p70 S6 kinase. FEBS Lett 447:303–306

    Article  PubMed  CAS  Google Scholar 

  • Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC (1997) Disruption of the p70(s6 k)/p85s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J17:6649–6

    Article  Google Scholar 

  • Silva AM, Gomes SL, Maia JC, Juliani MH (1988)Phosphorylation of ribosomal protein S6 is dependent on cyclic AMP in Dictyostelium discoideum. Second Messengers Phosphoproteins 12:271–280

    PubMed  CAS  Google Scholar 

  • Smith CJ, Wejksnora PJ, Warner JR, Rubin CS, Rosen OM (1979) Insulin-stimulated protein phosphorylation in 3T3-L1 preadipocytes. Proc Natl Acad Sci USA 76:2725–2729

    Article  PubMed  CAS  Google Scholar 

  • Smith CJ, Rubin CS, Rosen OM (1980) Insulin-treated 3T3-L1 adipocytes and cell-free extracts derived from them incorporate 32P into ribosomal protein S6. Proc Natl Acad Sci USA 77(5):2641–2645

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Gingras AC (1998) The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10:268–275

    Article  PubMed  CAS  Google Scholar 

  • Stewart MJ, Denell R (1993) Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth. Mol Cell Biol 13:2534–2535

    Google Scholar 

  • Stewart MJ, Thomas G (1994) Mitogenesis and protein synthesis: a role for ribosomal protein S6 phosphorylation? Bioessays 16:809–815

    Article  PubMed  CAS  Google Scholar 

  • Stocker H, Hafen E (2000) Genetic control of cell size. Curr Opin Genet Dev 10:529–535

    Article  PubMed  CAS  Google Scholar 

  • Sturgill TW, Ray LB, Erickson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718

    Article  PubMed  CAS  Google Scholar 

  • Susa M, Olivier AR, Fabbro D, Thomas G (1989) EGF induces biphasic S6 kinase activation: late phase is protein kinase C-dependent and contributes to mitogenicity. Cell 57:817–824

    Article  PubMed  CAS  Google Scholar 

  • Susa M, Vulevic D, Lane HA, Thomas G (1992) Inhibition or down-regulation of protein kinase C attenuates late phase p70s6k activation induced by epidermal growth factor but not by platelet-derived growth factor or insulin. J Biol Chem 267:6905–6909

    PubMed  CAS  Google Scholar 

  • Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth factor signaling. Biochem J 296:15–19

    PubMed  CAS  Google Scholar 

  • Tabarini D, Heinrich J, Rosen OM (1985) Activation of S6 kinase activity in 3T3-L1 cells by insulin and phorbol ester. Proc Natl Acad Sci USA 82:4369–4373

    Article  PubMed  CAS  Google Scholar 

  • Takase K, Papst P, Nairn AC, Gelfand EW (1995) Rapamycin inhibits ribosomal protein synthesis and induces G1 prolongation in mitogen-activated T lymphocytes. J Immunol 155:3418–3426

    PubMed  Google Scholar 

  • Terada N, Lucas JJ, Szepesi A, Franklin RA, Domenico J, Gelfand EW (1993) Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late Gl phase of the cycle. J Cell Physiol 154:7–15

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW (1994) Rapamycin selectively inhibits translation of mRNAs encoding elongation facTORs and ribosomal proteins. Proc Natl Acad Sci USA 91:11477–11481

    Article  PubMed  CAS  Google Scholar 

  • Terao K, Ogata K (1979) Proteins of small subunits of rat liver ribosomes that interact with poly(U). II. Cross-links between poly(U) and ribosomal proteins in 40 S subunits induced by UV irradiation. J Biol Chem 86(3):605–617

    CAS  Google Scholar 

  • Thomas G (2000) An encore for ribosome biogenesis in the control of cell proliferation. Nat Cell Biol 2:E71–E72

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Siegmann M, Kubler AM, Gordon J, Jimenez de Asua L (1980) Regulation of 40 S ribosomal protein S6 phosphorylation in Swiss mouse 3T3 cells. Cell 19:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Martin-Perez J, Siegmann M, Otto AM (1982) The effect of serum, EGF, PGF2 alpha and insulin on S6 phosphorylation and the initiation of protein and DNA synthesis. Cell 30:235–242

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    Article  PubMed  CAS  Google Scholar 

  • von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G (1997) The insulin-induced signalling pathway leading to S6 and initiation factor 4 E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6 k. Mol Cell Biol 17:5426–5436

    Google Scholar 

  • Wang X, Campbell LE, Miller CM, Proud CG (1998) Amino acid availability regulates p70 S6 kinase and multiple translation facTORs. Biochem J 334:261–267

    PubMed  CAS  Google Scholar 

  • Watson KL, Konrad KD, Woods DF, Bryant PJ (1992) Drosophila homologue of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci USA 89:11302–11306

    Article  PubMed  CAS  Google Scholar 

  • Weng QP, Andrabi K, Klippel A, Kozlowski MT, Williams LT, Avruch J (1995a) Phosphatidylinositol 3-kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci USA 92:5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Weng QP, Andrabi K, Kozlowski MT, Grove JR, Avruch J (1995b) Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15:2333–2340

    PubMed  CAS  Google Scholar 

  • Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J (1998) Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem 273:16621–16629

    Article  PubMed  CAS  Google Scholar 

  • Westphal RS, Coffee RL. Marotta A, Pelech S, Wadzinski B. (1999) Identification of kinase-phosphate signaling modules composed of p70 S6 kinase-protein phosphatase 2 A (PP2A) and p21-activated kinase-PP2A. J Biol Chem 274:687–692

    Article  PubMed  CAS  Google Scholar 

  • Wettenhall REH, Morgan FJ (1984) Phosphorylation of hepatic ribosomal protein S6 on 80 and 40 S ribosomes. Primary structure of S6 in the region of the major phosphorylation sites for cAMP-dependent protein kinases. J Biol Chem 259:2084–2091

    PubMed  CAS  Google Scholar 

  • Wettenhall REH, Erikson E, Maller JL (1992) Ordered multisite phosphorylation of Xenopus ribosomal protein S6 by S6 kinase II. J Biol Chem 267:9021–9027

    PubMed  CAS  Google Scholar 

  • Williams MR, C Arthur JS, Balendran A, van der Kaay J, Poli V, Cohen P, Alessi D (2000) The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol 10:439–448

    Article  PubMed  CAS  Google Scholar 

  • Wool I(1996) Extraribosomal functions of ribosomal proteins. Trends Biol Sci 21:164–165

    CAS  Google Scholar 

  • Yokogami K, Wakisaka S, Avruch J, Reeves SA (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10:47–50

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza D, Ghavidel A, Heitman J, Schultz MC (1998) Rapamycin induces the GO program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18:4463–4470

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avruch, J., Belham, C., Weng, QP., Hara, K., Yonezawa, K. (2001). The p70 S6 Kinase Integrates Nutrient and Growth Signals to Control Translational Capacity. In: Rhoads, R.E. (eds) Signaling Pathways for Translation. Progress in Molecular and Subcellular Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56688-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56688-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62589-3

  • Online ISBN: 978-3-642-56688-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics