Skip to main content

Stokes Problem, Layer Potentials and Regularizations, and Multiscale Applications

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

This contribution represents a continuation of a series of papers by the authors concerned with the multiscale solution of boundary-value problems corresponding to elliptic differential equations such as Laplace equation (Freeden and Mayer, Appl Comput Harmonic Anal 14:195–237, 2003; Acta Geod Geophys Hung 41:55–86, 2006), Helmholtz equation (Freeden et al., Numer Funct Anal Optim 24:747–782, 2003; Ilyasov, A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data postprocessing. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, 2011), Cauchy-Navier equation (Abeyratne, Cauchy-Navier wavelet solvers and their application in deformation analysis. PhD thesis, Geomathematics Group, University of Kaiserslautern, 2003; Abeyratne et al., J Appl Math 12:605–645, 2003), and Maxwell equations (Freeden and Mayer, Int J Wavelets Multiresolut Inf Process 5:417–449, 2007). The essential idea is to transform the differential equation into an integral equation by standard surface layer potentials and to use certain regularizations of the kernels of the layer potentials as scaling kernel functions. In this context, the distance of a parallel surface to the boundary acts as the scale parameter. The scaling kernel functions are defined as restrictions of the kernel values of layer potentials to the parallel surface. Wavelet kernel functions in scale discrete case are canonically obtained as the difference between two consecutive scaling functions. The solution process is formulated in such a way that an approximation of a boundary function on a regular surface simultaneously yields the solution of the boundary-value problem itself. In the case of Stokes flow – as discussed here – the kernels are of vectorial/tensorial nature, satisfying the differential equation in each variable. Stokes flow leads to significant applications of geomathematical relevance (e.g., in oceanography, meteorology).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyratne MK (2003) Cauchy-Navier wavelet solvers and their application in deformation analysis. PhD thesis, Geomathematics Group, University of Kaiserslautern

    Google Scholar 

  • Abeyratne MK, Freeden W, Mayer C (2003) Multiscale deformation analysis by Cauchy-Navier wavelets. J Appl Math 12:605–645

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge, MA

    Book  MATH  Google Scholar 

  • Blatter C (1998) Wavelets – Eine Einführung. Vieweg Verlag, Braunschweig

    Book  MATH  Google Scholar 

  • Brakhage H, Werner P (1965) Über das Dirichlet’sche Aussenraumproblem für die Helmholtz’sche Schwingungsgleichung. Arch Math 16:325–329

    Article  MathSciNet  MATH  Google Scholar 

  • Breuer J, Steinbach O, Wendland WL (2002) A wavelet boundary element method for the symmetric boundary integral formulation. In: Proceedings of IABEM 2002, Austin

    Google Scholar 

  • Colton C, Kress R (1992) Inverse acoustic and electromagnetic scattering theory. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Dahmen W (1997) Wavelet and multiscale methods for operator equations. Acta Numer 6:55–228

    Article  MathSciNet  MATH  Google Scholar 

  • Dahmen W, Kurdila AJ, Oswald P (1997a) Multiscale wavelet methods for partial differential equations (wavelet analysis and its applications). Academic, New York

    Google Scholar 

  • Dahmen W, Kurdila AJ, Oswald P (eds) (1997b) Multiscale wavelet methods for partial differential equations. Wavelet analysis and its applications. Academic, San Diego

    MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, New York

    Book  MATH  Google Scholar 

  • Faxen H (1929) Fredholm’sche Integralgleichungen zu der Hydrodynamik zäher Flüssigkeiten. Ark Mat Astr Fys 21A:1–40

    MATH  Google Scholar 

  • Fischer TM (1982) An integral equation procedure for the exterior 3-D slow viscous flow. Integral Equ Oper Theory 5:490–505

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W (1980) On the approximation of external gravitational potential with closed systems of (trial) functions. Bull Geod 54:1–20

    Article  MathSciNet  Google Scholar 

  • Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Freeden W (ed) Progress in geodetic science. Shaker, Aachen, pp 225–236

    Google Scholar 

  • Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, Stuttgart/Leipzig

    MATH  Google Scholar 

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Freeden W, Gutting M (2013) Special functions of mathematical (geo-)physics. Birkhäuser, Basel/Heidelberg

    Book  MATH  Google Scholar 

  • Freeden W, Mayer C (2003) Wavelets generated by layer potentials. Appl Comput Harmonic Anal 14:195–237

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W, Mayer C (2006) Multiscale solution for the Molodensky problem on regular telluroidal surfaces. Acta Geod Geophys Hung 41:55–86

    Article  Google Scholar 

  • Freeden W, Mayer C (2007) Wavelet modelling of tangential vector fields on regular surfaces by means of Mie potentials. Int J Wavelets Multiresolut Inf Process 5:417–449

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory: with applications to geoscience. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup. Springer, Heidelberg

    MATH  Google Scholar 

  • Freeden W, Windheuser U (1996) Spherical wavelet transform and its discretization. Adv Comput Math 5:51–94

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1994) Tensor spherical harmonics and tensor spherical splines. Manuscr Geod 19:70–100

    Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford Science Publications/Clarendon, Oxford

    MATH  Google Scholar 

  • Freeden W, Mayer C, Schreiner M (2003) Tree algorithms in wavelet approximation by Helmholtz potential operators. Numer Funct Anal Optim 24:747–782

    Article  MathSciNet  MATH  Google Scholar 

  • Goswami JC, Chan AK (1999) Fundamentals of wavelets: theory, algorithms, and applications. Wiley, New York

    MATH  Google Scholar 

  • Günter NM (1957) Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik. B.G. Teubner, Stuttgart

    MATH  Google Scholar 

  • Hebeker F-K (1986) Efficient boundary element methods for three-dimensional exterior viscous flows. Numer Methods Partial Differ Equ 2:273–297

    Article  MathSciNet  MATH  Google Scholar 

  • Heuser H, Funktionalanalysis: Theorie und Anwendungen. B.G. Teubner, Stuttgart (1992)

    Google Scholar 

  • Ilyasov M (2011) A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data postprocessing. PhD thesis, Geomathematics Group, University of Kaiserslautern

    Google Scholar 

  • Kellogg OD (1967) Foundation of potential theory. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Kersten H (1980) Grenz- und Sprungrelationen für Potentiale mit qudratsummierbarer Flächenbelegung. Resultate der Mathematik 3:17–24

    Article  MathSciNet  MATH  Google Scholar 

  • Konik M (2002) A fully discrete wavelet Galerkin boundary element method in three dimensions. Logos Verlag, Berlin

    Google Scholar 

  • Kress R (1989) Linear integral equations. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Kupradze VD (1965) Potential methods in the theory of elasticity. Israel Program for Scientific Translations, Jerusalem

    MATH  Google Scholar 

  • Ladyzhenskaja OA (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York

    Google Scholar 

  • Lage C, Schwab C (1999) Wavelet Galerkin algorithms for boundary integral equations. SIAM J Sci Comput 20:2195–2222

    Article  MathSciNet  MATH  Google Scholar 

  • Lax PD (1954) Symmetrizable linear transformations. Commun Pure Appl Math 7:633–647

    Article  MathSciNet  MATH  Google Scholar 

  • Leis R (1964) Zur Eindeutigkeit der Randwertaufgabe der Helmholtz’schen Schwingungsgleichung. Math Z 85:141–153

    Article  MathSciNet  MATH  Google Scholar 

  • Louis A, Maaß P, Rieder A (1994) Wavelets. Teubner Verlag, Stuttgart

    Book  MATH  Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic, San Diego/San Francisko/New York

    MATH  Google Scholar 

  • Mayer C (2007) A wavelet approach to the Stokes problem. Habilitation thesis, Geomathematics Group, University of Kaiserslautern

    Google Scholar 

  • Müller C (1969) Foundation of the mathematical theory of electromagnetic waves. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 155. Springer, Heidelberg

    Google Scholar 

  • Odqvist FKG (1930) Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math Z 32:329–375

    Article  MathSciNet  MATH  Google Scholar 

  • Panich OI (1965) On the question of the solvability of the exterior boundary-value problem for the wave equation and Maxwell’s equation. Russ Math Surv 20:221–226

    Google Scholar 

  • Power H (1987) On Rallison and Acrivos solution for the defomation and burst of a viscous drop in an extensional flow. J Fluid Mech 185:547–550

    Article  MathSciNet  MATH  Google Scholar 

  • Power H, Miranda G (1987) Second kind integral equation formulation of Stokes’ flows past a particle of arbitrary shape. SIAM J Appl Math 47:689–698

    Article  MathSciNet  MATH  Google Scholar 

  • Power H, Wrobel LC (1995) Boundary integral methods in fluid mechanics. Computational Mechanics Publications, Southampton/Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Appendices

Appendices

We conclude our work with a list of appendices.

Regular Surfaces

First, the main geometrical reference object discussed in this thesis, i.e., a regular surface, is defined, and certain properties are explained in more detail (see also Müller 1969; Freeden and Gerhards 2013):

Definition 13.

A subset \(\Sigma \subset \mathbb{R}^{3}\) is called a regular surface in \(\mathbb{R}^{3}\) if the following properties are fulfilled: 1. \(\Sigma \) is a closed and compact surface free of double points. 2. \(\Sigma \) divides the Euclidean space \(\mathbb{R}^{3}\) into the bounded inner region \(\Sigma _{\mathrm{int}}\) and the unbounded outer region \(\Sigma _{\mathrm{ext}}\) with \(\mathbb{R}^{3} = \Sigma _{\mathrm{int}}\,\dot{ \cup }\, \Sigma \,\dot{ \cup }\, \Sigma _{\mathrm{ext}}\). 3. The origin is in \(\Sigma _{\mathrm{int}}\), \(0 \in \Sigma _{\mathrm{int}}\). 4. \(\Sigma \) is locally of class C(2).

The fourth property means that, for each point \(x \in \Sigma \), there exists a neighborhood \(U(x) \subset \mathbb{R}^{3}\) of x such that \(\Sigma \cap U(x)\) can be mapped bijectively onto an open subset \(V \subset \mathbb{R}^{2}\) and that this mapping is twice continuously differentiable. The fourth property of Definition 13 is equivalent to the existence of a continuously differentiable unit normal field ν on \(\Sigma \) pointing, by definition, into the outer space \(\Sigma _{\mathrm{ext}}\).

Examples of a regular surface are the sphere \(\Omega _{R}\) with radius R > 0, the ellipsoid, and as geoscientifically relevant example the real (regular) Earth’s surface (obtained by modern GPS technology).

Definition 14.

Let \(\nu: \Sigma \rightarrow \mathbb{R}^{3}\) denote the unit normal field on \(\Sigma \). Then the set

$$\displaystyle{ \Sigma (\tau ) =\{ x \in \mathbb{R}^{3}\vert x = y +\tau \nu (y),\,y \in \Sigma \} }$$
(384)

generates a parallel surface which is exterior to \(\Sigma \) for τ > 0 and interior for τ < 0.

It is well known (see, e.g., Müller 1969; Freeden and Gerhards 2013) that if \(\left \vert \tau \right \vert\) is sufficiently small, then the regularity of \(\Sigma \) implies the regularity of \(\Sigma (\tau )\). According to our regularity assumptions, imposed on \(\Sigma \), the functions

$$\displaystyle{ (x,y)\mapsto \frac{\left \vert \nu (x) -\nu (y)\right \vert } {\left \vert x - y\right \vert },\quad (x,y) \in \Sigma \times \Sigma,\,x\not =y, }$$
(385)

and

$$\displaystyle{ (x,y)\mapsto \frac{\left \vert \nu (x) \cdot (x - y)\right \vert } {\left \vert x - y\right \vert ^{2}},\quad (x,y) \in \Sigma \times \Sigma,\,x\not =y, }$$
(386)

are bounded. Hence, there exists a constant M > 0 such that, for all \(x,y \in \Sigma \),

$$\displaystyle\begin{array}{rcl} \left \vert \nu (x) -\nu (y)\right \vert \leq M\left \vert x - y\right \vert \,,& &{}\end{array}$$
(387)
$$\displaystyle\begin{array}{rcl} \left \vert \nu (x) \cdot (x - y)\right \vert \leq M\left \vert x - y\right \vert ^{2}\,.& &{}\end{array}$$
(388)

Moreover, it is easy to see that

$$\displaystyle{ \inf _{x,y\in \Sigma }\left \vert x +\tau \nu (x) - (y +\sigma \nu (y))\right \vert = \left \vert \tau -\sigma \right \vert }$$
(389)

provided that \(\left \vert \tau \right \vert\) and \(\left \vert \sigma \right \vert\) are sufficiently small.

In order to separate members of the class \(c(\Sigma )\) of continuous vector fields on \(\Sigma \) into their tangential and normal parts with respect to a regular surface, we introduce the projection operators p nor and p tan by

$$\displaystyle\begin{array}{rcl} p_{\mathrm{nor}}f(x)& =& (f(x) \cdot \nu (x))\nu (x),\quad x \in \Sigma,f \in \mathrm{ c}(\Sigma ),{}\end{array}$$
(390)
$$\displaystyle\begin{array}{rcl} p_{\mathrm{tan}}f(x)& =& f(x) - p_{\mathrm{nor}}f(x),\quad x \in \Sigma,f \in \mathrm{ c}(\Sigma )\,.{}\end{array}$$
(391)

Hence, the corresponding subspaces of \(\mathrm{c}(\Sigma )\) are given by

$$\displaystyle\begin{array}{rcl} \mathrm{c}_{\mathrm{nor}}(\Sigma )& =& \{f \in \mathrm{ c}(\Sigma )\vert f = p_{\mathrm{nor}}f\},{}\end{array}$$
(392)
$$\displaystyle\begin{array}{rcl} \mathrm{c}_{\mathrm{tan}}(\Sigma )& =& \{f \in \mathrm{ c}(\Sigma )\vert f = p_{\mathrm{tan}}f\}.{}\end{array}$$
(393)

The spaces \(\mathrm{c}_{\mathrm{nor}}^{(p)}(\Sigma )\) and \(\mathrm{c}_{\mathrm{tan}}^{(p)}(\Sigma )\), 0 ≤ p are definable in the same fashion.

The set of vector fields \(f: \Sigma \rightarrow \mathbb{R}\) which are measurable and for which

$$\displaystyle{ \left \Vert f\right \Vert _{l^{p}(\Sigma )} = \left (\int _{\Sigma }\left \vert f(x)\right \vert ^{p}\,\mathrm{d}\omega (x)\right )^{\frac{1} {p} } < \infty, }$$
(394)

is denoted by \(l^{p}(\Sigma )\), where dω(x) denotes the surface element on \(\Sigma \) (note that in the case of \(\Sigma = \Omega _{R}\) with radius R > 0, we write dω R (x) instead of \(\mathrm{d}\omega _{\Omega _{R}}(x)\) and dω instead of dω 1 in the case R = 1).

The definition of the normal and the tangential operator can be extended in canonical way to vector fields in \(l^{2}(\Sigma )\) by a density argument. Hence, we define

$$\displaystyle\begin{array}{rcl} l_{\mathrm{nor}}^{2}(\Sigma )& =& \{f \in l^{2}(\Sigma )\vert f = p_{\mathrm{ nor}}f\},{}\end{array}$$
(395)
$$\displaystyle\begin{array}{rcl} l_{\mathrm{tan}}^{2}(\Sigma )& =& \{f \in l^{2}(\Sigma )\vert f = p_{\mathrm{ tan}}f\}.{}\end{array}$$
(396)

Clearly, we have the orthogonal decomposition

$$\displaystyle{ l^{2}(\Sigma ) = l_{\mathrm{ nor}}^{2}(\Sigma ) \oplus l_{\mathrm{ tan}}^{2}(\Sigma )\,. }$$
(397)

Kernel Functions

When we introduce layer potentials with respect to a regular surface, scalar- and tensor-valued kernel functions defined on the regular surface are of particular importance. Thus, they are discussed in the following.

Definition 15.

Let \(\Sigma \) be a regular surface. A bivariate scalar kernel function \(K: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}\) is called weakly continuous if K is continuous for all \(x,y \in \Sigma \) with xy, and there exist positive constants M and 0 < α ≤ 2 such that, for all \(x,y \in \Sigma \), xy, we have

$$\displaystyle{ \left \vert K(x,y)\right \vert \leq M \frac{1} {\left \vert x - y\right \vert ^{2-\alpha }}\,. }$$
(398)

The pair \(\left < \mathrm{C}^{(0)}(\Sigma ),\mathrm{C}^{(0)}(\Sigma )\right >\) with \(\Sigma \) being a regular surface, together with the \(\mathop{\L }^{2}(\Sigma )\)-inner product, is a dual system. Thus, the first requirements of the theorem of Fredholm (see, e.g., Kress 1989; Heuser 1992) is fulfilled. To finally apply this theorem, we need compact operators on the space \(\mathrm{C}^{(0)}(\Sigma )\).

Theorem 22.

Let \(\Sigma \) be a regular surface and let the integral operator \(A:\mathrm{ C}^{(0)}(\Sigma ) \rightarrow \mathrm{ C}^{(0)}(\Sigma )\) be given by

$$\displaystyle{ (AF)(x) =\int _{\Sigma }K(x,y)F(y)\,\mathrm{d}\omega (y),\quad x \in \Sigma, }$$
(399)

where the kernel K is continuous or weakly singular. Then the operator A is compact on \(\mathrm{C}^{(0)}(\Sigma )\) .

For a proof of this theorem, the reader is referred to, e.g., Kupradze (1965) and Kress (1989).

Theorem 23.

Let \(\Sigma \) be a regular surface. Assume the kernel K to be weakly continuous with constant α. Furthermore, let us assume that there exists an \(N \in \mathbb{N}\) and a constant M > 0 such that

$$\displaystyle{ \left \vert K(x_{1},y) - K(x_{2},y)\right \vert \leq M\sum _{j=1}^{N} \frac{\left \vert x_{1} - x_{2}\right \vert ^{j}} {\left \vert x_{1} - y\right \vert ^{2+j-\alpha }} }$$
(400)

for all \(x_{1},x_{2} \in \mathbb{R}^{3}\) and \(y \in \Sigma \) with \(2\left \vert x_{1} - x_{2}\right \vert \leq \left \vert x_{1} - y\right \vert\) . Then the scalar potential \(U: \mathbb{R}^{3} \rightarrow \mathbb{R}\) formally defined by

$$\displaystyle{ U(x) =\int _{\Sigma }K(x,y)F(y)\,\mathrm{d}\omega (y),\quad x \in \mathbb{R}^{3}, }$$
(401)

with layer density \(F \in \mathrm{ C}^{(0)}(\Sigma )\) belongs to the Hölder space \(\mathrm{C}^{(0,\beta )}(\mathbb{R}^{3})\) for all 0 < β ≤α if 0 < α < 1, for all 0 < β < 1 if α = 1, and for all 0 < β ≤ 1 if 1 < α < 2.

Theorem 24.

Let \(\Sigma \) be a regular surface and let \(x_{0} \in \Sigma \) . Assume the kernel K to be continuous for all \(x \in D_{\tau _{0}}\) , \(y \in \Sigma \) , x≠y with \(D_{\tau _{0}}\) given by

$$\displaystyle{ D_{\tau _{0}} =\{ y = x +\tau \nu (x)\,\vert \,x \in \Sigma,\,\left \vert \tau \right \vert \leq \left \vert \tau _{0}\right \vert \}, }$$
(402)

and assume that there exists a constant C > 0 such that for all \(x \in D_{\tau _{0}}\) , \(y \in \Sigma \) , x≠y, we have

$$\displaystyle{ \left \vert K(x,y)\right \vert \leq \frac{C} {\left \vert x - y\right \vert ^{2}}\,. }$$
(403)

Furthermore, let us assume that there exists an \(N \in \mathbb{N}\) such that

$$\displaystyle{ \left \vert K(x_{1},y) - K(x_{2},y)\right \vert \leq C\sum _{j=1}^{N} \frac{\left \vert x_{1} - x_{2}\right \vert ^{j}} {\left \vert x_{1} - y\right \vert ^{2+j}} }$$
(404)

for all \(x_{1},x_{2} \in D_{\tau _{0}}\) , \(y \in \Sigma \) , x≠y with \(2\left \vert x_{1} - x_{2}\right \vert \leq \left \vert x_{1} - y\right \vert\) , and that

$$\displaystyle{ \left \vert \int _{\Sigma \setminus (B_{r}(z)\cap \Sigma )}K(x,y)\,\mathrm{d}\omega (y)\right \vert \leq C }$$
(405)

for all \(z \in \Sigma \) , \(x \in D_{\tau _{0}}\) and for all 0 < r < R, where R is chosen sufficiently small such that \(B_{R}(z) \cap \Sigma \) is still connected. We formally define, for \(F \in \mathrm{ C}^{(0,\alpha )}(\Sigma )\) ,

$$\displaystyle{ U(x) =\int _{\Sigma }K(x,y)\big(F(y) - F(z)\big)\,\mathrm{d}\omega (y),\quad x \in D_{\tau _{0}}\,. }$$
(406)

Then the potential U is continuous and belongs to the Hölder space \(\mathrm{C}^{(0,\alpha )}(D_{\tau _{0}})\) .

The pair \(\left < \mathrm{c}^{(0)}(\Sigma ),\mathrm{c}^{(0)}(\Sigma )\right >\) together with the \(\mathop{\l }^{2}(\Sigma )\)-inner product is a dual system. In order to use the theorem of Fredholm, we finally need compact operators on the space \(\mathrm{c}^{(0)}(\Sigma )\). It is clear that Definition 15, Theorems 22, and 23 can canonically be extended to the case of a tensor kernel function k.

Definition 16.

Let \(\Sigma \) be a regular surface. A tensorial kernel function \(\mathbf{k}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3\times 3}\) is said to be weakly continuous if k is defined and continuous for all \(x,y \in \Sigma \) with xy, and there exist positive constants M and 0 < α ≤ 2 such that for all \(x,y \in \Sigma \), xy, we have

$$\displaystyle{ \left \vert \mathbf{k}(x,y)\right \vert \leq M \frac{1} {\left \vert x - y\right \vert ^{2-\alpha }}. }$$
(407)

Corollary 9.

Let \(\Sigma \) be a regular surface.

  1. 1.

    Let the integral operator \(A:\mathrm{ c}^{(0)}(\Sigma ) \rightarrow \mathrm{ c}^{(0)}(\Sigma )\) be given by

    $$\displaystyle{ (Af)(x) =\int _{\Sigma }\mathbf{k}(x,y)f(y)\,\mathrm{d}\omega (y),\quad x \in \Sigma, }$$
    (408)

    where the tensor kernel k is continuous or weakly singular. Then the operator A is compact on \(\mathrm{c}^{(0)}(\Sigma )\) .

  2. 2.

    Let us assume that the tensor kernel k be weakly continuous with constant α. Furthermore, let us assume that there exists \(N \in \mathbb{N}\) and a constant M > 0 such that

    $$\displaystyle{ \left \vert \mathbf{k}(x_{1},y) -\mathbf{k}(x_{2},y)\right \vert \leq M\sum _{j=1}^{N} \frac{\left \vert x_{1} - x_{2}\right \vert ^{j}} {\left \vert x_{1} - y\right \vert ^{2+j-\alpha }} }$$
    (409)

    for all \(x_{1},x_{2} \in \mathbb{R}^{3}\) and \(y \in \Sigma \) with \(2\left \vert x_{1} - x_{2}\right \vert \leq \left \vert x_{1} - y\right \vert\) . Then the vector potential \(u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) defined by

    $$\displaystyle{ u(x) =\int _{\Sigma }\mathbf{k}(x,y)f(y)\,\mathrm{d}\omega (y),\quad x \in \mathbb{R}^{3}, }$$
    (410)

    with layer density \(f \in \mathrm{ c}^{(0)}(\Sigma )\) is an element of the Hölder space \(\mathrm{c}^{(0,\beta )}(\mathbb{R}^{3})\) with the same relations between β and α as given in Theorem  23 .

  3. 3.

    Let us assume that the tensor kernel k be continuous for all \(x \in D_{\tau _{0}}\) , \(y \in \Sigma \) , x≠y, where \(D_{\tau _{0}}\) is defined in Theorem  24 , and let us assume that there exists a constant C > 0 such that for all \(x \in D_{\tau _{0}}\) , \(y \in \Sigma \) , x≠y, we have

    $$\displaystyle{ \left \vert \mathbf{k}(x,y)\right \vert \leq \frac{C} {\left \vert x - y\right \vert ^{2}}\,. }$$
    (411)

    Furthermore, assume that there exists \(N \in \mathbb{N}\) such that

    $$\displaystyle{ \left \vert \mathbf{k}(x_{1},y) -\mathbf{k}(x_{2},y)\right \vert \leq C\sum _{j=1}^{N} \frac{\left \vert x_{1} - x_{2}\right \vert ^{j}} {\left \vert x_{1} - y\right \vert ^{2+j}} }$$
    (412)

    for all \(x_{1},x_{2} \in D_{\tau _{0}}\) , \(y \in \Sigma \) , x≠y with \(2\left \vert x_{1} - x_{2}\right \vert \leq \left \vert x_{1} - y\right \vert\) , and that

    $$\displaystyle{ \left \vert \int _{\Sigma \setminus (B_{r}(z)\cap \Sigma )}\mathbf{k}(x,y)\,\mathrm{d}\omega (y)\right \vert \leq C }$$
    (413)

    for all \(z \in \Sigma \) , \(x \in D_{\tau _{0}}\) and for all 0 < r < R. We define, for \(f \in \mathrm{ c}^{(0,\alpha )}(\Sigma )\) , the vector potential u by

    $$\displaystyle{ u(x) =\int _{\Sigma }\mathbf{k}(x,y)\big(f(y) - f(z)\big)\,\mathrm{d}\omega (y),\quad x \in D_{\tau _{0}}\,. }$$
    (414)

    Then the vector potential u is continuous and belongs to the space \(\mathrm{c}^{(0,\alpha )}(D_{\tau _{0}})\) .

Scaling Functions and Wavelets

In the following, we present some helpful auxiliary material. In particular, we are interested in the explicit representations of the \(\Sigma \)-tensor scaling functions and wavelets presented in Sect. 4.1 as well as those of the second kind as introduced in Sect. 4.4. Furthermore, we give some graphical illustrations of the tensor scaling functions and wavelets.

4.1 Scaling Functions

Tensorial scaling functions on regular surfaces have been introduced in Corollary 7 and Definition 5. Their explicit representations are, for the tensorial case, given by

$$\displaystyle{ \boldsymbol{\Phi }_{\pm \tau }^{1}(x,y) = -\frac{1} {8\pi }\left ( \frac{\mathbf{i}} {\left \vert x \pm \tau \nu (x) - y\right \vert } + \frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{3}} \right )\,, }$$
(415)
$$\displaystyle{ \boldsymbol{\Phi }_{\pm \tau }^{2}(x,y) = \frac{3} {2\pi }\left (\frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{5}} \left ((x \pm \tau \nu (x) - y) \cdot \nu (y)\right )\right. }$$
(416)
$$\displaystyle{ \qquad + \left.\frac{(x - y) \otimes (x - y)} {\left \vert x - y\right \vert ^{5}} \left ((x - y) \cdot \nu (y)\right )\right )\,, }$$
(417)
$$\displaystyle{ \boldsymbol{\Phi }_{\pm \tau }^{3}(x,y) = \frac{3} {2\pi }\left (\frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{5}} \left ((x \pm \tau \nu (x) - y) \cdot \nu (x)\right )\right. }$$
(418)
$$\displaystyle{ \qquad + \left.\frac{(x - y) \otimes (x - y)} {\left \vert x - y\right \vert ^{5}} \left ((x - y) \cdot \nu (x)\right )\right )\,, }$$
(419)
$$\displaystyle{ \boldsymbol{\Phi }_{\tau }^{4}(x,y) = -\frac{1} {8\pi }\left (\left ( \frac{\mathbf{i}} {\left \vert x +\tau \nu (x) - y\right \vert } + \frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{3}} \right )\right. }$$
(420)
$$\displaystyle{ \qquad \left.-\left ( \frac{\mathbf{i}} {\left \vert x -\tau \nu (x) - y\right \vert } + \frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{3}} \right )\right )\,, }$$
(421)
$$\displaystyle{ \boldsymbol{\Phi }_{\tau }^{5}(x,y) = \frac{3} {4\pi }\left (\left (\frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{5}} \left ((x +\tau \nu (x) - y) \cdot \nu (y)\right )\right )\right. }$$
(422)
$$\displaystyle{ \qquad \left.-\left (\frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{5}} \left ((x -\tau \nu (x) - y) \cdot \nu (y)\right )\right )\right ), }$$
(423)
$$\displaystyle{ \boldsymbol{\Phi }_{\tau }^{6}(x,y) = \frac{3} {4\pi }\left (\left (\frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{5}} \left ((x +\tau \nu (x) - y) \cdot \nu (x)\right )\right )\right. }$$
(424)
$$\displaystyle{ \qquad \left.-\left (\frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{5}} \left ((x -\tau \nu (x) - y) \cdot \nu (x)\right )\right )\right ), }$$
(425)

where τ > 0 is the scale parameter and \(x,y \in \Sigma \). Graphical illustrations of the \(\Sigma \)-tensor scaling function of type i = 5, \(\boldsymbol{\Phi }_{\tau }^{5}\), for different values of the scale parameter τ can be found in Fig. 7.

Fig. 7
figure 7

\(\Sigma \)-tensor scaling function \(\boldsymbol{\Phi }_{\tau }^{5}\) on the unit sphere \(\Omega \) for different values of the scale parameter τ. The left figures show the Frobenius norms of the tensor scaling functions \(\boldsymbol{\Phi }_{\tau }^{5}(x,y)\) for a fixed value \(y \in \Omega \) and variable \(x \in \Omega \). The right figures show a sectional cut of the left one along the equator

4.2 Wavelet Functions

The \(\Sigma \)-tensor wavelet functions corresponding to the \(\Sigma \)-tensor scaling functions have been, for the weight function α(τ) = τ −1, defined in Definition 6 by

$$\displaystyle{ \boldsymbol{\Psi }_{\tau }^{i}(x,y) = -\tau \frac{\mathrm{d}} {\mathrm{d}\tau }\boldsymbol{\Phi }_{\tau }^{i}(x,y),\qquad x,y \in \Sigma \,. }$$
(426)

Their explicit representations can be calculated to be

$$\displaystyle\begin{array}{rcl} & & \boldsymbol{\Psi }_{\pm \tau }^{2}(x,y) \\ & & \qquad = -\tau \frac{\mathrm{d}} {\mathrm{d}\tau }\left (2\mathbf{k}(x \pm \tau \nu (x),y) - 2\mathbf{k}(x,y)\right ), \\ & & \qquad = -\frac{3\tau } {4\pi }\left [5\left (\frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{7}} \left ((x \pm \tau \nu (x) - y) \cdot \nu (y)\right )^{2}\right )\right. \\ & & \qquad -\left (\frac{(x \pm \tau \nu (x) - y) \otimes \nu (x) +\nu (x) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{5}} \left ((x \pm \tau \nu (x) - y) \cdot \nu (y)\right )\right ) \\ & & \qquad -\left (\frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{5}} \left (\nu (x) \cdot \nu (y)\right )\right ) \\ & & \qquad + 5\left (\frac{(x - y) \otimes (x - y)} {\left \vert x - y\right \vert ^{7}} \left ((x - y) \cdot \nu (y)\right )^{2}\right ) \\ & & \qquad -\left (\frac{(x - y) \otimes \nu (x) +\nu (x) \otimes (x - y)} {\left \vert x - y\right \vert ^{5}} \left ((x - y) \cdot \nu (y)\right )\right ) \\ & & \qquad -\left.\left (\frac{(x - y) \otimes (x - y)} {\left \vert x - y\right \vert ^{5}} \left (\nu (x) \cdot \nu (y)\right )\right )\right ]\,, {}\end{array}$$
(427)
$$\displaystyle\begin{array}{rcl} & & \boldsymbol{\Psi }_{\tau }^{3}(x,y) \\ & & \qquad = -\frac{3\tau } {4\pi }\left [5\left (\frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{7}} \left ((x \pm \tau \nu (x) - y) \cdot \nu (x)\right )^{2}\right )\right. \\ & & \qquad -\left (\frac{(x \pm \tau \nu (x) - y) \otimes \nu (x) +\nu (x) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{5}} \left ((x \pm \tau \nu (x) - y) \cdot \nu (x)\right )\right ) \\ & & \qquad -\left (\frac{(x \pm \tau \nu (x) - y) \otimes (x \pm \tau \nu (x) - y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{5}} \right ) \\ & & \qquad + 5\left (\frac{(x - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x - y\right \vert ^{7}} \left ((x - y) \cdot \nu (x)\right )^{2}\right ) \\ & & \qquad -\left (\frac{(x - y) \otimes \nu (x) +\nu (x) \otimes (x - y)} {\left \vert x - y\right \vert ^{5}} \left ((x - y) \cdot \nu (x)\right )\right ) \\ & & \qquad -\left.\left (\frac{(x - y) \otimes (x - y)} {\left \vert x - y\right \vert ^{5}} \right )\right ]\,, {}\end{array}$$
(428)
$$\displaystyle\begin{array}{rcl} & & \boldsymbol{\Psi }_{\tau }^{5}(x,y) \\ & & \qquad = -\tau \frac{\mathrm{d}} {\mathrm{d}\tau }\left (2\mathbf{k}(x +\tau \nu (x),y) - 2\mathbf{k}(x -\tau \nu (x),y)\right ), \\ & & \qquad = -\frac{3\tau } {4\pi }\left [5\left (\frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{7}} \left ((x +\tau \nu (x) - y) \cdot \nu (y)\right )^{2}\right )\right. \\ & & \qquad -\left (\frac{(x +\tau \nu (x) - y) \otimes \nu (x) +\nu (x) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{5}} \left ((x +\tau \nu (x) - y) \cdot \nu (y)\right )\right ) \\ & & \qquad -\left (\frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{5}} \left (\nu (x) \cdot \nu (y)\right )\right ) \\ & & \qquad + 5\left (\frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{7}} \left ((x -\tau \nu (x) - y) \cdot \nu (y)\right )^{2}\right ) \\ & & \qquad -\left (\frac{(x -\tau \nu (x) - y) \otimes \nu (x) +\nu (x) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{5}} \left ((x -\tau \nu (x) - y) \cdot \nu (y)\right )\right ) \\ & & \qquad -\left.\left (\frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{5}} \left (\nu (x) \cdot \nu (y)\right )\right )\right ]\,, {}\end{array}$$
(429)
$$\displaystyle\begin{array}{rcl} & & \boldsymbol{\Psi }_{\tau }^{6}(x,y) \\ & & \qquad = -\frac{3\tau } {4\pi }\left [5\left (\frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{7}} \left ((x +\tau \nu (x) - y) \cdot \nu (x)\right )^{2}\right )\right. \\ & & \qquad -\left (\frac{(x +\tau \nu (x) - y) \otimes \nu (x) +\nu (x) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{5}} \left ((x +\tau \nu (x) - y) \cdot \nu (x)\right )\right ) \\ & & \qquad -\left (\frac{(x +\tau \nu (x) - y) \otimes (x +\tau \nu (x) - y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{5}} \right ) \\ & & \qquad + 5\left (\frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{7}} \left ((x -\tau \nu (x) - y) \cdot \nu (x)\right )^{2}\right ) \\ & & \qquad -\left (\frac{(x -\tau \nu (x) - y) \otimes \nu (x) +\nu (x) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{5}} \left ((x -\tau \nu (x) - y) \cdot \nu (x)\right )\right ) \\ & & \qquad -\left.\left (\frac{(x -\tau \nu (x) - y) \otimes (x -\tau \nu (x) - y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{5}} \right )\right ]\,, {}\end{array}$$
(430)

for \(x,y \in \Sigma \) and τ > 0. In Sect. 4.3, we introduced a scale discretization which led to scale discrete \(\Sigma \)-tensor wavelet functions of type i. They are given, for \(i = 1,\ldots,6\), by

$$\displaystyle{ \boldsymbol{\Psi }_{\tau _{j}}^{i}(x,y) = \boldsymbol{\Phi }_{\tau _{ j+1}}^{i}(x,y) -\boldsymbol{\Phi }_{\tau _{ j}}^{i}(x,y),\qquad x,y \in \Sigma \,, }$$
(431)

where the sequence \(\{\tau _{j}\}_{j\in \mathbb{Z}}\) is a discretization of the scale interval (0, ). The graphical illustrations of the scale discrete \(\Sigma \)-tensor scaling function of type i = 5, \(\boldsymbol{\Psi }_{\tau _{ j}}^{5}\), can be found in Fig. 8.

Fig. 8
figure 8

Discrete \(\Sigma \)-tensor wavelet function \(\boldsymbol{\Psi }_{\tau _{j}}^{5}\) on the unit sphere \(\Omega \) for different values of the discrete scale parameter \(j \in \mathbb{Z}\). The left figures show the Frobenius norms of the tensor kernel \(\boldsymbol{\Psi }_{\tau _{ j}}^{5}(x,y)\) for a fixed value \(y \in \Omega \) and variable \(x \in \Omega \). The right figures show the scalar value \(\varepsilon ^{r}(x) \cdot \left (\boldsymbol{\Psi }_{\tau _{j}}^{5}(x,y)\varepsilon ^{r}(x)\right )\), where \(\varepsilon ^{r}(x)\) is the radial unit vector at the point x. This “radial projection” of the tensor kernel is suitable to show the wavelet character of the \(\Sigma \)-tensor wavelet functions

4.3 Scaling Functions of the Second Kind

\(\Sigma \)-tensor scaling functions of the second kind have been defined in Definition 10. For τ > 0, they are defined by

$$\displaystyle{ \tilde{\boldsymbol{\Phi }}_{\tau }^{i}(x,y) = \Phi _{\tau }^{i}(x,y)\,\mathbf{i}\,,\qquad x,y \in \Sigma,\quad \,i = 2,3,5,6, }$$
(432)

where the scalar kernels \(\Phi _{\tau }^{i}\), i = 2, 3, 5, 6 are given by

$$\displaystyle{ \Phi _{\pm \tau }^{2}(x,y) = \frac{1} {2\pi }\left (\frac{(x \pm \tau \nu (x) - y) \cdot \nu (y)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{3}} -\frac{(x - y) \cdot \nu (y)} {\left \vert x - y\right \vert ^{3}} \right )\,, }$$
(433)
$$\displaystyle{ \Phi _{\pm \tau }^{3}(x,y) = \frac{1} {2\pi }\left (\frac{(x \pm \tau \nu (x) - y) \cdot \nu (x)} {\left \vert x \pm \tau \nu (x) - y\right \vert ^{3}} -\frac{(x - y) \cdot \nu (x)} {\left \vert x - y\right \vert ^{3}} \right )\,, }$$
(434)
$$\displaystyle{ \Phi _{\tau }^{5}(x,y) = \frac{1} {4\pi }\left (\frac{(x +\tau \nu (x) - y) \cdot \nu (y)} {\left \vert x +\tau \nu (x) - y\right \vert ^{3}} -\frac{(x -\tau \nu (x) - y) \cdot \nu (y)} {\left \vert x -\tau \nu (x) - y\right \vert ^{3}} \right )\,, }$$
(435)
$$\displaystyle{ \Phi _{\tau }^{6}(x,y) = \frac{1} {4\pi }\left (\frac{(x +\tau \nu (x) - y) \cdot \nu (x)} {\left \vert x +\tau \nu (x) - y\right \vert ^{3}} -\frac{(x -\tau \nu (x) - y) \cdot \nu (x)} {\left \vert x -\tau \nu (x) - y\right \vert ^{3}} \right )\,, }$$
(436)

for \(x,y \in \Sigma \). Graphical illustrations of the \(\Sigma \)-tensor scaling function of the second kind of type i = 5, \(\tilde{\boldsymbol{\Phi }}_{\tau }^{5}\), for different values of the scale parameter \(\tau\) can be found in Fig. 9.

Fig. 9
figure 9

\(\Sigma \)-tensor scaling function of the second kind \(\tilde{\boldsymbol{\Phi }}_{\tau }^{5}\) on the unit sphere \(\Omega \) for different values of the scale parameter τ. The left figures show the Frobenius norms of the tensor scaling functions \(\tilde{\boldsymbol{\Phi }}_{\tau _{j}}^{5}(x,y)\) for a fixed value \(y \in \Omega \) and variable \(x \in \Omega \). The right figures show a sectional cut of the left one along the equator

4.4 Wavelet Functions of the Second Kind

The \(\Sigma \)-tensor wavelet functions of the second kind corresponding to the \(\Sigma \)-tensor scaling functions of the second kind presented in Appendix C.3 have been, for the weight function α(τ) = τ −1, τ > 0 and i = 2, 3, 5, 6, defined in Definition 11 by

$$\displaystyle{ \boldsymbol{\Psi }_{\tau }^{i}(x,y) = -\tau \frac{\mathrm{d}} {\mathrm{d}\tau }\boldsymbol{\Phi }_{\tau }^{i}(x,y),\qquad x,y \in \Sigma \,. }$$
(437)

They can be calculated explicitly using the representations of the tensor scaling functions of the second kind given in Definition 10. It easily follows that

$$\displaystyle{ \tilde{\boldsymbol{\Psi }}_{\tau }^{i}(x,y) = \Psi _{\tau }^{i}(x,y)\,\mathbf{i}\,,\qquad x,y \in \Sigma,\quad \,i = 2,3,5,6, }$$
(438)

with the scalar kernels \(\Psi _{\tau }^{i}: \Sigma \times \Sigma \rightarrow \mathbb{R}\) given by

$$\displaystyle{ \Psi _{\tau }^{i}(x,y) = -\frac{1} {\alpha (\tau )} \frac{\mathrm{d}} {\mathrm{d}\tau }\Phi _{\tau }^{i}(x,y),\qquad x,y \in \Sigma, }$$
(439)

and the scalar kernels \(\Phi _{\tau }^{i}\), i = 2, 3, 5, 6, given in Appendix C. Explicit representations of the scalar wavelet functions \(\Psi _{\tau }^{i}\) can be calculated to be (see also Freeden and Mayer 2003)

$$\displaystyle\begin{array}{rcl} \Psi _{\pm \tau }^{2}(x,y)& =& \frac{-\tau } {2\pi } \frac{\nu (x) \cdot \nu (y)} {\vert x \pm \tau \nu (x) - y\vert ^{3}} \\ & & \quad + \frac{3\tau } {2\pi } \frac{((x \pm \tau \nu (x) - y) \cdot \nu (x))((x \pm \tau \nu (x) - y) \cdot \nu (y))} {\vert x \pm \tau \nu (x) - y\vert ^{5}} \,,{}\end{array}$$
(440)
$$\displaystyle{ \Psi _{\pm \tau }^{3}(x,y) = \frac{-\tau } {2\pi } \frac{1} {\vert x \pm \tau \nu (x) - y\vert ^{3}} + \frac{3\tau } {2\pi } \frac{((x \pm \tau \nu (x) - y) \cdot \nu (x))^{2}} {\vert x \pm \tau \nu (x) - y\vert ^{5}} \,, }$$
(441)
$$\displaystyle\begin{array}{rcl} \Psi _{\tau }^{5}(x,y)& =& \frac{-\tau } {4\pi } \left ( \frac{\nu (x) \cdot \nu (y)} {\vert x +\tau \nu (x) - y\vert ^{3}} + \frac{\nu (x) \cdot \nu (y)} {\vert x -\tau \nu (x) - y\vert ^{3}}\right ) \\ & & +\ \frac{3\tau } {4\pi }\left (\frac{((x +\tau \nu (x) - y) \cdot \nu (x))((x +\tau \nu (x) - y) \cdot \nu (y))} {\vert s +\tau \nu (x) - y\vert ^{5}} \right. \\ & & +\ \left.\frac{((x -\tau \nu (x) - y) \cdot \nu (x))((x -\tau \nu (x) - y) \cdot \nu (y))} {\vert x -\tau \nu (x) - y\vert ^{5}} \right )\,,{}\end{array}$$
(442)
$$\displaystyle\begin{array}{rcl} \Psi _{\tau }^{6}(x,y)& =& \frac{-\tau } {4\pi } \left ( \frac{1} {\vert x +\tau \nu (x) - y\vert ^{3}} + \frac{1} {\vert x -\tau \nu (x) - y\vert ^{3}}\right ) \\ & & \qquad +\ \frac{3\tau } {4\pi }\left (\frac{((x +\tau \nu (x) - y) \cdot \nu (x))^{2}} {\vert x +\tau \nu (x) - y\vert ^{5}} + \frac{((x -\tau \nu (x) - y) \cdot \nu (x))^{2}} {\vert x -\tau \nu (x) - y\vert ^{5}} \right )\,,{}\end{array}$$
(443)

for τ > 0 and \(x,y \in \Sigma \).

In Sect. 4.4, we have also defined scale discrete \(\Sigma \)-tensor wavelet functions of the second kind of type i. They are given, for \(i = 1,\ldots,6\), by

$$\displaystyle{ \tilde{\boldsymbol{\Psi }}_{\tau _{j}}^{i}(x,y) =\tilde{\boldsymbol{ \Phi }}_{\tau _{ j+1}}^{i}(x,y) -\tilde{\boldsymbol{ \Phi }}_{\tau _{ j}}^{i}(x,y),\qquad x,y \in \Sigma \,, }$$
(444)

where the sequence \(\{\tau _{j}\}_{j\in \mathbb{Z}}\) is a discretization of the scale interval (0, ). Some graphical illustrations of the scale discrete \(\Sigma \)-tensor scaling function of the second kind of type i = 5, \(\tilde{\boldsymbol{\Psi }}_{\tau _{j}}^{5}\), can be found in Fig. 10.

Fig. 10
figure 10

Discrete \(\Sigma \)-tensor wavelet function \(\tilde{\boldsymbol{\Psi }}_{\tau _{j}}^{5}\) of the second kind on the unit sphere \(\Omega \) for different values of the discrete scale parameter \(j \in \mathbb{Z}\) on the unit sphere \(\Omega \). The left figures show the Frobenius norms of the tensor wavelets \(\tilde{\boldsymbol{\Psi }}_{\tau _{j}}^{5}(x,y)\) for a fixed value \(y \in \Omega \) and variable \(x \in \Omega \). The right figures show the scalar value \(\varepsilon ^{r}(x) \cdot \left (\tilde{\boldsymbol{\Psi }}_{\tau _{j}}^{5}(x,y)\varepsilon ^{r}(x)\right )\), where \(\varepsilon ^{r}(x)\) is the radial unit vector at the point x. This “radial projection” of the tensor kernel is suitable to show the wavelet character of the \(\Sigma \)-tensor wavelet functions

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mayer, C., Freeden, W. (2015). Stokes Problem, Layer Potentials and Regularizations, and Multiscale Applications. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_95

Download citation

Publish with us

Policies and ethics