Skip to main content
Log in

On the approximation of external gravitational potential with closed systems of (trial) functions

  • Published:
Bulletin Géodésique Aims and scope Submit manuscript

Summary

Let S be the (regular) boundary-surface of an exterior regionE e in Euclidean space ℜ3 (for instance: sphere, ellipsoid, geoid, earth's surface). Denote by {φn} a countable, linearly independent system of trial functions (e.g., solid spherical harmonics or certain singularity functions) which are harmonic in some domain containingE e ∪ S. It is the purpose of this paper to show that the restrictions {ϕn} of the functions {φn} onS form a closed system in the spaceC (S), i.e. any functionf, defined and continuous onS, can be approximated uniformly by a linear combination of the functions ϕn.

Consequences of this result are versions of Runge and Keldysh-Lavrentiev theorems adapted to the chosen system {φn} and the mathematical justification of the use of trial functions in numerical (especially: collocational) procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography and references

  • A. BJERHAMMAR (1975): Discrete Approaches to the Solution of the Boundary Value Problem in Physical Geodesy, Boll. di Geod. e Science Affini, No. 2, 185–240.

    Google Scholar 

  • J.A.R. BLAIS (1978): Least-Squares Estimation Methods, Manuscripta geodaetica, vol. 3, 23–53.

    Google Scholar 

  • C. COLLATZ (1960): The Numerical Treatment of Differential Equations, Springer Verlag.

  • L. COLLATZ (1966): Functional Analysis and Numerical Mathematics, Academic Press.

  • R. COURANT, D. HILBERT (1924): Methoden der mathematischen Physik I, II, Springer Verlag, Berlin.

    Google Scholar 

  • P.J. DAVIS (1963): Interpolation and Approximation, Blaisdell Publishing Company, New York-Toronto-London.

    Google Scholar 

  • W. FREEDEN (1979): Uber eine Klasse von Integralformeln der mathematischen Geodäsie, Veröffentlichung der Geodätischen Instituts der Rheinisch-Westfälischen Technischen Hochschule Aachen, Nr. 27.

  • W. FREEDEN (1980): Uber eine Klasse von Kubaturformeln der Einheitssphäre, ZfV, (to appear).

  • P.R. GARABEDIAN (1964): Partial Differential Equations, John Wiley & Sons, New York-London-Sydney.

    Google Scholar 

  • E. GRAFAREND (1975): Geodetic Prediction Concepts, Mathematical Geodesy I, in: Methoden und Verfahren der mathematischen Physik, Bd. 13, 161–200.

  • W.A. HEISKANEN, H. MORITZ (1967): Physical Geodesy, Freeman & Co., San Francisco.

    Google Scholar 

  • L.W. KANTOROWITSCH, W.I. KRYLOW (1956): Näherungsmethoden der höheren Analysis, VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • M. KELDYSH, M. LAVRENTIEV (1937): On the Stability of the Solution to the Dirichlet Problem (Russian), Izv. AN SSSR, ser. matem., 551–593.

  • O.D. KELLOGG (1929): Foundations of Potential Theory, Frederick Ungar Publishing Company, New York.

    Book  Google Scholar 

  • H. KERSTEN (1979): Grenz-und Sprungrelationen für Potentiale mit quadrat- summierbarer Flächenbelegung, Resultate der Mathematik, vol. 2, (to appear).

  • H. KERSTEN (1980): Die C-Vollständigkeit partikulärer Lösungssysteme der Schwingungsgleichung, Resultate der Mathematik, (to appear).

  • K.-R. KOCH (1977): Least Squares Adjustment and Collocation, Bulletin Géodésique, vol. 51, No. 2, 127–135.

    Article  Google Scholar 

  • G.A. KORN, T.M. KORN (1961): Mathematical Handbook for Scientists and Engineers, Mac Graw-Hill.

  • T. KRARUP (1969): A Contribution to the Mathematical Foundation of Physical Geodesy, Geodaetisk Institut, Meddelelse No. 44, Kobenhavn.

  • T. KRARUP (1975): On Potential Theory, Mathematical Geodesy I, in: Methoden und Verfahren der mathematischen Physik, Bd. 12, 78–161.

  • P.D. LAX (1954): Symmetrizable Linear Transformations, Comm. on Pure and Appl. Math., Vol. VII, 633–647.

    Article  Google Scholar 

  • L.A. LJUSTERNIK, W.I. SOBOLEW (1968): Elements der Funktionalanalysis, Akademie Verlag, Berlin.

    Google Scholar 

  • P. MEISSL (1975): Elements of Functional Analysis, Mathematical Geodesy I, in Methoden und Verfahren der mathematischen Physik, Bd. 12, 19–78.

  • P. MEISSL (1976): Hilbert Spaces and their Application to Geodetic Least squares Problems, Boll. di Geodesia e Science Affini, Vol. XXXV, No. 1, 181–210.

    Google Scholar 

  • S.G. MICHLIN (1970): An Advanced Course of Mathematical Physics, North Holland Publishing Company, Amsterdam.

    Google Scholar 

  • H. MORITZ (1970): Least-Squares Estimation in Physical Geodesy, Report No. 130, Department of Geodetic Science, Ohio State University.

  • H. MORITZ (1972): Advanced Least-Squares Methods, Report No. 175, Department of Geodetic Science, Ohio State University.

  • H. MORITZ (1973): Least-Squares Collocation, Deutsche Geodätische Kommission, Reihe A, Nr. 75.

  • H. MORITZ (1975): Elements of Collocation, Mathematical Geodesy II, in: Methoden und Verfahren der mathematischen Physik, Bd. 13, 125–159.

  • H. MORITZ (1978): Statistical Foundations of Collocation, presented at: Seventh Symposium on Mathematical Geodesy, Assisi.

  • H. MORITZ, K.P. SCHWARZ (1973): On the Computation of Spherical Harmonics from Satellite Observations, Boll. di Geodesia e Science Affini, Ann. 32, No. 3, 185–200.

    Google Scholar 

  • Cl. MÜLLER (1966): Spherical Harmonics, Lecture Notes in Mathematics, Springer Verlag.

  • Cl. MÜLLER (1969): Foundations of the Mathematical Theory of Electromagnetic Waves, Springer Verlag, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  • Cl. MÜLLER (1976): Boundary Values and Diffraction Problems, Symposia Mathematics, Istituto Nazionale di Alta Mathematica, Vol. XVIII, 353–367.

    Google Scholar 

  • Cl. MÜLLER, H. KERSTEN (1979): Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Helmholtzschen Schwingungsgleichung (to appear).

  • I.I. MUELLER (1974): Global Satellite Triangulation and Trilateration Results, J.G.R., Vol. 79, 5333–5347.

    Article  Google Scholar 

  • R.H. RAPP (1977): Determination of Potential Coefficients to Degree 52 from 5° Mean Gravity Anomalies, Bulletin Géodésique, Vol. 51, 301–323.

    Article  Google Scholar 

  • K.P. SCHWARZ (1975a): Zonale Kugelfunktionskoeffizienten aus Satellitendaten durch Kollokation, Deutsche Geodätische Kommission, Reihe C, Nr. 209.

  • K.P. SCHWARZ (1975 a): Application of Collocation, Spherical Harmonics from Satellite Observations, Mathematical Geodesy III, in: Methoden und Verfahren der mathematischen Physik, Bd, 14, 111–132.

  • K.P. SCHWARZ (1976): Numerische Probleme bei der Bestimmung des globalen Erdschwerefeldes durch Kollokation, ZfV, Nr. 6, 221–230.

    Google Scholar 

  • C.C. TSCHERNING (1977): A Note on the Choice of Norm when Using Collocation for the Computations of Approximations to the Anamalous Potential, Bulletin Géodésique, Vol. 51, No. 2, 137–147.

    Article  Google Scholar 

  • C.C. TSCHERNING (1978): Collocation and Least-Squares Methods as a Tool for Handling Gravity Field Dependent Date Obtained through Space Research Techniques, Bulletin Géodésique, Vol. 52, No. 3, 199–213.

    Article  Google Scholar 

  • K. YOSIDA (1971): Functional Analysis, Springer Verlag, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  • H. WOLF (1977): Zur Grundlegung der Kollokationsmethode, ZfV, Vol. 102, No. 6, 237–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeden, W. On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Geodesique 54, 1–20 (1980). https://doi.org/10.1007/BF02521092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02521092

Keywords

Navigation