Skip to main content

Fitting Voronoi Diagrams to Planar Tesselations

  • Conference paper
Combinatorial Algorithms (IWOCA 2013)

Abstract

Given a tesselation of the plane, defined by a planar straight-line graph G, we want to find a minimal set S of points in the plane, such that the Voronoi diagram associated with S ‘fits’ G. This is the Generalized Inverse Voronoi Problem (GIVP), defined in [12] and rediscovered recently in [3]. Here we give an algorithm that solves this problem with a number of points that is linear in the size of G, assuming that the smallest angle in G is constant.

Mathematics Subject Classification: 52C45, 65D18, 68U05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ash, P., Bolker, E.D.: Recognizing Dirichlet Tesselations. Geometriae Dedicata 19, 175–206 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurenhammer, F.: Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra. J. Symbolic Computation 3, 249–255 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, S., Bhattacharya, B.B., Das, S., Karmakar, A., Maheshwari, A., Roy, S.: On the Construction of a Generalized Voronoi Inverse of a Rectangular Tesselation. In: Procs. 9th Int. IEEE Symp. on Voronoi Diagrams in Science and Engineering, pp. 132–137. IEEE, New Brunswick (2012)

    Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Hartvigsen, D.: Recognizing Voronoi Diagrams with Linear Programming. ORSA J. Comput. 4, 369–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Martínez, A., Martínez, J., Pérez-Rosés, H., Quirós, R.: Image Processing using Voronoi diagrams. In: Procs. 2007 Int. Conf. on Image Proc., Comp. Vision, and Pat. Rec., pp. 485–491. CSREA Press (2007)

    Google Scholar 

  7. Ratti, B., Sommer, C.: Approximating Shortest Paths in Spatial Social Networks. In: Procs. 2012 ASE/IEEE Int. Conf. on Social Computing and 2012 ASE/IEEE Int. Conf. on Privacy, Security, Risk and Trust, pp. 585–586. IEEE Comp. Soc. (2012)

    Google Scholar 

  8. Schoenberg, F.P., Ferguson, T., Li, C.: Inverting Dirichlet Tesselations. The Computer J. 46, 76–83 (2003)

    Article  MATH  Google Scholar 

  9. Sommer, C.: Approximate Shortest Path and Distance Queries in Networks. PhD Thesis, Department of Computer Science, The University of Tokyo, Japan (2010)

    Google Scholar 

  10. Sugihara, K., Iri, M.: Construction of the Voronoi Diagram for ‘One Million’ Generators in Single-Precision Arithmetic. Procs. IEEE 80, 1471–1484 (1992)

    Article  Google Scholar 

  11. Trinchet-Almaguer, D.: Algorithm for Solving the Generalized Inverse Voronoi Problem. Honour’s Thesis, Department of Computer Science, University of Oriente, Cuba (2005) (in Spanish)

    Google Scholar 

  12. Trinchet-Almaguer, D., Pérez-Rosés, H.: Algorithm for Solving the Generalized Inverse Voronoi Problem (in Spanish). Revista Cubana de Ciencias Informaticas 1(4), 58–71 (2007)

    Google Scholar 

  13. Yeganova, L., Falk, J.E., Dandurova, Y.V.: Robust Separation of Multiple Sets. Nonlinear Analysis 47, 1845–1856 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yeganova, L.E.: Robust linear separation of multiple finite sets. Ph.D. Thesis, George Washington University (2001)

    Google Scholar 

  15. Zhou, B., Pei, J., Luk, W.-S.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM SIGKDD Explorations Newsletter 10, 12–22 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aloupis, G., Pérez-Rosés, H., Pineda-Villavicencio, G., Taslakian, P., Trinchet-Almaguer, D. (2013). Fitting Voronoi Diagrams to Planar Tesselations. In: Lecroq, T., Mouchard, L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45278-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45278-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45277-2

  • Online ISBN: 978-3-642-45278-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics