Skip to main content

An Almost Optimal Algorithm for Voronoi Diagrams of Non-disjoint Line Segments

(Extended Abstract)

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8973))

Included in the following conference series:

  • 717 Accesses

Abstract

This paper presents an almost optimal algorithm that computes the Voronoi diagram of a set S of n line segments that may intersect or cross each other. If there are k intersections among the input segments in S, our algorithm takes O(n α(n) logn + k) time, where α(·) denotes the functional inverse of the Ackermann function. The best known running time prior to this work was O((n + k) logn). Since the lower bound of the problem is shown to be Ω(n logn + k) in the worst case, our algorithm is worst-case optimal for k = Ω(n α(n) logn), and is only a factor of α(n) away from the lower bound. For the purpose, we also present an improved algorithm that computes the medial axis or the Voronoi diagram of a polygon with holes.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1A05006927).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Cheong, O., Vigneron, A.: The Voronoi diagram of curved objects. Discrete Comput. Geom. 34(3), 439–453 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier (2000)

    Google Scholar 

  3. Chang, H., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Proc. 26th ACM-SIAM Sympos. Discrete Algo (SODA 2015) (2015)

    Google Scholar 

  4. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39, 1–54 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Held, M. (ed.): On the Computational Geometry of Pocket Machining. LNCS, vol. 500. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  9. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kirkpatrick, D.G.: Efficient computation of continuous skeleton. In: Proc. 20th Annu. IEEE Sympos. Found. Comput. Sci., pp. 18–27 (1979)

    Google Scholar 

  11. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  12. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom.: Theory Appl. 3(3), 157–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 4(4), 363–369 (1982)

    Article  MATH  Google Scholar 

  14. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley and Sons, New York (2000)

    Book  Google Scholar 

  15. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  16. Srinivasan, V., Nackman, L.R.: Voronoi diagram for multiply-connected polygonal domains I: Algorithm. IBM J. Research Development 31(3), 361–372 (1987)

    Article  MathSciNet  Google Scholar 

  17. Yap, C.K.: An O(n logn) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput. Geom. 2(1), 365–393 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bae, S.W. (2015). An Almost Optimal Algorithm for Voronoi Diagrams of Non-disjoint Line Segments. In: Rahman, M.S., Tomita, E. (eds) WALCOM: Algorithms and Computation. WALCOM 2015. Lecture Notes in Computer Science, vol 8973. Springer, Cham. https://doi.org/10.1007/978-3-319-15612-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15612-5_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15611-8

  • Online ISBN: 978-3-319-15612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics