Skip to main content

6 Photobiology and Circadian Clocks in Neurospora

  • Chapter
  • First Online:
Fungal Genomics

Part of the book series: The Mycota ((MYCOTA,volume 13))

Abstract

Light sensing and circadian rhythmicity are two related processes that promote the adaptation of many fungal species to their environment. This chapter begins with a description of fungal photoreceptors and their distributions across fungal lineages. We then discuss in some detail the molecular mechanisms of the photoresponse in two well-studied model fungi, Neurospora crassa and Aspergillus nidulans, placing an emphasis on the important similarities and differences between the two species. This will lead to a description of circadian rhythmicity in fungi in general, with a particular emphasis on Neurospora crassa. We highlight the core mechanism in this organism as well as discuss the inputs and outputs that can affect the clock. We also note at the end some new developments in molecular genetics in Neurospora.

*These authors contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263:1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Arpaia G, Cerri F, Baima S, Macino G (1999) Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol Gen Genet 262:314–322

    Article  PubMed  CAS  Google Scholar 

  • Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938

    Article  PubMed  CAS  Google Scholar 

  • Baker CL, Kettenbach AN, Loros JJ, Gerber SA, Dunlap JC (2009) Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol Cell 34:354–363

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baker CL, Loros JJ, Dunlap JC (2012) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36:95–110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bardiya N, Shiu PK (2007) Cyclosporin A-resistance based gene placement system for Neurospora crassa. Fungal Genet Biol 44:307–314

    Article  PubMed  CAS  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008a) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008b) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  • Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    Article  PubMed  CAS  Google Scholar 

  • Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC (2007a) The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 21:1494–1505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Belden WJ, Loros JJ, Dunlap JC (2007b) Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 25:587–600

    Article  PubMed  CAS  Google Scholar 

  • Belden WJ, Lewis ZA, Selker EU, Loros JJ, Dunlap JC (2011) CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet 7:e1002166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1996) Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol 16:513–521

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bennett LD, Beremand P, Thomas TL, Bell-Pedersen D (2013) Circadian activation of the mitogen-activated protein kinase MAK-1 facilitates rhythms in clock-controlled genes in Neurospora crassa. Eukaryot Cell 12:59–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A 96:8034–8039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bieszke JA, Li L, Borkovich KA (2007) The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa. Curr Genet 52:149–157

    Article  PubMed  CAS  Google Scholar 

  • Bluhm BH, Dunkle LD (2008) PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Genet Biol 45:1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Bluhm BH, Burnham AM, Dunkle LD (2010) A circadian rhythm regulating hyphal melanization in Cercospora kikuchii. Mycologia 102:1221–1228

    Article  PubMed  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    Article  PubMed  CAS  Google Scholar 

  • Brenna A, Grimaldi B, Filetici P, Ballario P (2012) Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol Biol Cell 23:3863–3872

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown L (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565

    Article  PubMed  CAS  Google Scholar 

  • Bruce VG, Weight F, Pittendrigh CS (1960) Resetting the sporulation rhythm in Pilobolus with short light flashes of high intensity. Science 131:728–730

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Kaldi K (2008) Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol Microbiol 68:255–262

    Article  PubMed  CAS  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Bibbins M, Ponce-Noyola P, Herrera-Estrella A (2004) BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–3569

    Article  PubMed  CAS  Google Scholar 

  • Cha J, Yuan H, Liu Y (2011) Regulation of the activity and cellular localization of the circadian clock protein FRQ. J Biol Chem 286:11469–11478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen CH, Loros J (2009) Neurospora sees the light: light signaling components in a model system. Commun Integr Biol 2:448–451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen C, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen C, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A 107:16715–16720

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng P, Yang Y, Heintzen C, Liu Y (2001) Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J 20:101–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng P, Yang Y, Gardner KH, Liu Y (2002) PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol Cell Biol 22:517–524

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng P, Yang Y, Wang L, He Q, Liu Y (2003) WHITE COLLAR-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J Biol Chem 278:3801–3808

    Article  PubMed  CAS  Google Scholar 

  • Cheng P, He Q, Wang L, Liu Y (2005) Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev 19:234–241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ (2012) LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol Plant 5:533–544

    Article  PubMed  CAS  Google Scholar 

  • Collett MA, Garceau N, Dunlap JC, Loros JJ (2002) Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2. Genetics 160:149–158

    PubMed Central  PubMed  CAS  Google Scholar 

  • Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, Borkovich KA, Dunlap JC (2010) High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol 638:33–40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Colot HV, Loros JJ, Dunlap JC (2005) Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency. Mol Biol Cell 16:5563–5571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behavior. Photochem Photobiol Sci 6:725–736

    Article  PubMed  CAS  Google Scholar 

  • Corrochano LM, Cerdá-Olmedo E (1992) Sex, light and carotenes: the development of Phycomyces. Trends Genet 8:268–274

    Article  PubMed  CAS  Google Scholar 

  • Corrochano LM, Garre V (2010) Photobiology in the zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899

    Article  PubMed  CAS  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769

    Article  PubMed  CAS  Google Scholar 

  • Davis RH, Perkins DD (2002) Timeline: Neurospora: a model of model microbes. Nat Rev Genet 3:397–403

    Article  PubMed  CAS  Google Scholar 

  • Diernfellner AC, Schafmeier T (2011) Phosphorylations: making the Neurospora crassa circadian clock tick. FEBS Lett 585:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Diernfellner AC, Schafmeier T, Merrow MW, Brunner M (2005) Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev 19:1968–1973

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M (2007) Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett 581:5759–5764

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diernfellner AC, Querfurth C, Salazar C, Hofer T, Brunner M (2009) Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev 23:2192–2200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dong W, Tang X, Yu Y, Nilsen R, Kim R, Griffith J, Arnold J, Schuttler HB (2008) Systems biology of the clock in Neurospora crassa. PLoS One 3:e3105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ (2004) The Neurospora circadian system. J Biol Rhythms 19:414–424

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587

    Article  PubMed  CAS  Google Scholar 

  • Elvin M, Loros JJ, Dunlap JC, Heintzen C (2005) The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev 19:2593–2605

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Estrada AF, Avalos J (2009) Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol 387:59–73

    Article  PubMed  CAS  Google Scholar 

  • Franchi L, Fulci V, Macino G (2005) Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol Microbiol 56:334–345

    Article  PubMed  CAS  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    Article  PubMed  CAS  Google Scholar 

  • Froehlich AC, Loros JJ, Dunlap JC (2003) Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci U S A 100:5914–5919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 4:2140–2152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Froehlich AC, Chen CH, Belden WJ, Madeti C, Roenneberg T, Merrow M, Loros JJ, Dunlap JC (2010) Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 9:738–750

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Garceau NY, Liu Y, Loros JJ, Dunlap JC (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89:469–476

    Article  PubMed  CAS  Google Scholar 

  • Gardner GF, Feldman JF (1980) The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics 96:877–886

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7:28–37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Greene AV, Keller N, Haas H, Bell-Pedersen D (2003) A circadian oscillator in Aspergillus spp regulates daily development and gene expression. Eukaryot Cell 2:231–237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR, Freitag M, Selker EU, Ballario P (2006) The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo J, Cheng P, Yuan H, Liu Y (2009) The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 138:1236–1246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo J, Cheng P, Liu Y (2010) Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ. J Biol Chem 285:11508–11515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He Q, Liu Y (2005) Degradation of the Neurospora circadian clock protein FREQUENCY through the ubiquitin-proteasome pathway. Biochem Soc Trans 33:953–956

    Article  PubMed  CAS  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    Article  PubMed  CAS  Google Scholar 

  • He Q, Cheng P, Yang Y, Yu H, Liu Y (2003) FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J 22:4421–4430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He Q, Shu H, Cheng P, Chen S, Wang L, Liu Y (2005) Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop. J Biol Chem 280:17526–17532

    Article  PubMed  CAS  Google Scholar 

  • He Q, Cha J, Lee HC, Yang Y, Liu Y (2006) CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev 20:2552–2565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heintzen C, Liu Y (2007) The Neurospora crassa circadian clock. Adv Genet 58:25–66

    Article  PubMed  CAS  Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464

    Article  PubMed  CAS  Google Scholar 

  • Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp PCC6803. Nucleic Acids Res 28:2353–2362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hong CI, Ruoff P, Loros JJ, Dunlap JC (2008) Closing the circadian negative feedback loop: FRQ-dependent clearance of WC-1 from the nucleus. Genes Dev 22:3196–3204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hunt SM, Elvin M, Crosthwaite SK, Heintzen C (2007) The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa. Genes Dev 21:1964–1974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hunt SM, Thompson S, Elvin M, Heintzen C (2010) VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc Natl Acad Sci U S A 107:16709–16714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hurley JM, Chen CH, Loros JJ, Dunlap JC (2012) Light-inducible system for tunable protein expression in Neurospora crassa. G3 2:1207–1212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Idnurm A, Heitman J (2005a) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Idnurm A, Heitman J (2005b) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15:R829–R832

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  PubMed Central  PubMed  Google Scholar 

  • Karniol B, Wagner JR, Walker JM, Vierstra RD (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J 392:103–116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klein RM, Klein DT (1962) Interaction of ionizing and visible radiation in mutation induction in Neurospora crassa. Am J Bot 49:870–874

    Article  Google Scholar 

  • Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Mühlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kramer C, Loros JJ, Dunlap JC, Crosthwaite SK (2003) Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421:948–952

    Article  PubMed  CAS  Google Scholar 

  • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    Article  PubMed  CAS  Google Scholar 

  • Lamb TM, Goldsmith CS, Bennett L, Finch KE, Bell-Pedersen D (2011) Direct transcriptional control of a p38 MAPK pathway by the circadian clock in Neurospora crassa. PLoS One 6:e27149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lamb TM, Finch KE, Bell-Pedersen D (2012) The Neurospora crassa OS MAPK pathway-activated transcription factor ASL-1 contributes to circadian rhythms in pathway responsive clock-controlled genes. Fungal Genet Biol 49:180–188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Larrondo LF, Loros JJ, Dunlap JC (2012) High-resolution spatiotemporal analysis of gene expression in real time: in vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 49:681–683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee K, Dunlap JC, Loros JJ (2003) Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa. Genetics 163:103–114

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee K, Singh P, Chung W, Ash J, Kim TS, Hang L, Park S (2006) Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 43:694–706

    Article  PubMed  CAS  Google Scholar 

  • Lewis ZA, Correa A, Schwerdtfeger C, Link KL, Xie X, Gomer RH, Thomas T, Ebbole DJ, Bell-Pedersen D (2002) Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol Microbiol 45:917–931

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Macino G (1997) White Collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Bell-Pedersen D (2006) Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot Cell 5:1184–1193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Garceau NY, Loros JJ, Dunlap JC (1997) Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock. Cell 89:477–486

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Merrow M, Loros JJ, Dunlap JC (1998) How temperature changes reset a circadian oscillator. Science 281:825–829

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Loros J, Dunlap JC (2000) Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci U S A 97:234–239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, He Q, Cheng P (2003) Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci 60:2131–2138

    Article  PubMed  CAS  Google Scholar 

  • Lombardi LM, Brody S (2005) Circadian rhythms in Neurospora crassa: clock gene homologues in fungi. Fungal Genet Biol 42:887–892

    Article  PubMed  CAS  Google Scholar 

  • Loros JJ, Feldman JF (1986) Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms 1:187–198

    Article  PubMed  CAS  Google Scholar 

  • Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under control of the circadian clock in Neurospora. Science 243:385–388

    Article  PubMed  CAS  Google Scholar 

  • Losi A (2007) Flavin-based blue-light photosensors: a photobiophysics update. Photochem Photobiol 83:1283–1300

    Article  PubMed  CAS  Google Scholar 

  • Losi A, Gärtner W (2011) Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem Photobiol 87:491–510

    Article  PubMed  CAS  Google Scholar 

  • Lukens RJ (1965) Reversal by red light of blue light inhibition of sporulation in Alternaria solani. Phytopathology 55:1032

    Google Scholar 

  • Luo C, Loros JJ, Dunlap JC (1998) Nuclear localization is required for function of the essential clock protein FRQ. EMBO J 17:1228–1235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772

    Article  PubMed  CAS  Google Scholar 

  • McClung CR, Fox BA, Dunlap JC (1989) The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 339:558–562

    Article  PubMed  CAS  Google Scholar 

  • Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC (2009) A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 137:749–760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Merrow MW, Garceau NY, Dunlap JC (1997) Dissection of a circadian oscillation into discrete domains. Proc Natl Acad Sci U S A 94:3877–3882

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Morgan LW, Greene AV, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38:327–332

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47:352–363

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Bruce VG, Rosensweig NS, Rubin ML (1959) Growth patterns in Neurospora: a biological clock in Neurospora. Nature 184:169–170

    Article  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    Article  PubMed  CAS  Google Scholar 

  • Purschwitz J, Müller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Mol Genet Genomics 281:35–42

    Article  PubMed  CAS  Google Scholar 

  • Querfurth C, Diernfellner AC, Gin E, Malzahn E, Hofer T, Brunner M (2011) Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol Cell 43:713–722

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    Article  PubMed  CAS  Google Scholar 

  • Rosales-Saavedra T, Esquivel-Naranjo EU, Casas-Flores S, Martínez-Hernández P, Ibarra-Laclette E, Cortes-Penagos C, Herrera-Estrella A (2006) Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152:3305–3317

    Article  PubMed  CAS  Google Scholar 

  • Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–822

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ruiz-Roldan MC, Garre V, Guarro J, Marine M, Roncero MIG (2008) Role of the White Collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell 7:1227–1230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ruoff P, Loros JJ, Dunlap JC (2005) The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc Natl Acad Sci U S A 102:17681–17686

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Salichos L, Rokas A (2010) The diversity and evolution of circadian clock proteins in fungi. Mycologia 102:269–278

    Article  PubMed  CAS  Google Scholar 

  • Sancar G, Sancar C, Brunner M, Schafmeier T (2009) Activity of the circadian transcription factor White Collar Complex is modulated by phosphorylation of SP-motifs. FEBS Lett 583:1833–1840

    Article  PubMed  CAS  Google Scholar 

  • Sancar G, Sancar C, Brunner M (2012) Metabolic compensation of the Neurospora clock by a glucose-dependent feedback of the circadian repressor CSP1 on the core oscillator. Genes Dev 26:2435–2442

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sano H, Kaneko S, Sakamoto Y, Sato T, Shishido K (2009) The basidiomycetous mushroom Lentinula edodes white collar-2 homolog PHRB, a partner of putative blue-light photoreceptor PHRA, binds to a specific site in the promoter region of the L edodes tyrosinase gene. Fungal Genet Biol 46:333–341

    Article  PubMed  CAS  Google Scholar 

  • Sargent ML, Briggs WR, Woodward DO (1966) Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 41:1343–1349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schneider MJ, Murray BJ (1979) Phytochrome mediation of uredospoore germination in the fungus Puccinia graminis. Photochem Photobiol 29:1051–1052

    Article  CAS  Google Scholar 

  • Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M (2007) Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 8:449

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Selby CP, Sancar A (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A 103:17696–17700

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharma AK, Foster KW (1997) Rhodopsin guides fungal phototaxis. Nature 387:465–466

    Article  Google Scholar 

  • Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469

    Article  PubMed  CAS  Google Scholar 

  • Shi M, Collett M, Loros JJ, Dunlap JC (2010) FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genetics 184:351–361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037

    Article  PubMed  CAS  Google Scholar 

  • Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V (2008) A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White collar-1-like activator. Mol Microbiol 70:1026–1036

    PubMed  CAS  Google Scholar 

  • Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9:1549–1556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tan KK (1974) Red-far-red reversible photoreaction in the recovery from blue-light inhibition of sporulation in Botrytis cinerea. J Gen Microbiol 82:201–202

    Article  Google Scholar 

  • Tang CT, Li S, Long C, Cha J, Huang G, Li L, Chen S, Liu Y (2009) Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. Proc Natl Acad Sci U S A 106:10722–10727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Veluchamy S, Rollins JA (2008) A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol 45:1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Waschuk SA, Bezerra AG, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci U S A 102:6879–6883

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Kataoka H, Miyazakl A, Watanabe M, Ootakl T (1996) Action spectra for photoinhibition of sexual development in Phycomyces blakesleeanus. Photochem Photobiol 64:387–392

    Article  CAS  Google Scholar 

  • Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR (2007) Conformational switching in the fungal light sensor Vivid. Science 316:1054–1057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Loros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuller, K.K., Hurley, J.M., Loros, J.J., Dunlap, J.C. (2014). 6 Photobiology and Circadian Clocks in Neurospora . In: Nowrousian, M. (eds) Fungal Genomics. The Mycota, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45218-5_6

Download citation

Publish with us

Policies and ethics