Skip to main content
Log in

The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We previously demonstrated that the nop-1 gene encodes a putative green-light opsin photoreceptor that is highly expressed in cultures that support asexual sporulation (conidiation) in Neurospora crassa. In this study, we demonstrate that nop-1 is a late-stage conidiation gene, through analysis of nop-1 transcript levels in wild-type strains and mutants blocked at various stages of conidiation. nop-1 message amounts are similar with constant illumination or darkness during conidiation, consistent with developmental, but not light, regulation of nop-1 expression. Furthermore, photoinduction experiments using wild type and mutants defective in components of the blue light sensing pathway (wc-1 and wc-2) indicate that nop-1 mRNA levels are not appreciably affected by brief light exposure during conidiation. Surprisingly, nop-1 message amounts are greatly elevated in wc-2 mutants in light or dark, suggesting that the wc-2 gene product regulates nop-1 expression in a light-independent manner. Analysis of expression patterns for al-2, con-10 and con-13, genes regulated by conidiation and/or blue light, showed that nop-1 has significant and reproducible effects on all three genes during various stages of conidiation. The results suggest that NOP-1 directly or indirectly modulates carotenogenesis and repression of conidiation-specific gene expression in N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey LA, Ebbole DJ (1998) The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 148:1813–1820

    PubMed  CAS  Google Scholar 

  • Bailey-Shrode L, Ebbole DJ (2004) The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics 166:1741–1749

    Article  PubMed  CAS  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC (1996) Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci USA 93:13096–13101

    Article  PubMed  CAS  Google Scholar 

  • Bergo V, Spudich EN, Spudich JL, Rothschild KJ (2002) A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins. Photochem Photobiol 76:341–349

    Article  PubMed  CAS  Google Scholar 

  • Berlin V, Yanofsky C (1985a) Isolation and characterization of genes differentially expressed during conidiation of Neurospora crassa. Mol Cell Biol 5:849–855

    PubMed  CAS  Google Scholar 

  • Berlin V, Yanofsky C (1985b) Protein changes during the asexual cycle of Neurospora crassa. Mol Cell Biol 5:839–848

    PubMed  CAS  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999a) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA 96:8034–8039

    Article  PubMed  CAS  Google Scholar 

  • Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL (1999b) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–14145

    Article  PubMed  CAS  Google Scholar 

  • Borkovich KA, et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  PubMed  CAS  Google Scholar 

  • Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL (2001) Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem 276:32495–32505

    Article  PubMed  CAS  Google Scholar 

  • Brown LS, Jung KH (2006) Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 5:538–546

    Article  PubMed  CAS  Google Scholar 

  • Carattoli A, Kato E, Rodriguez-Franco M, Stuart WD, Macino G (1995) A chimeric light-regulated amino acid transport system allows the isolation of blue light regulator (blr) mutants of Neurospora crassa. Proc Natl Acad Sci USA 92:6612–6616

    Article  PubMed  CAS  Google Scholar 

  • Corrochano LM, Lauter FR, Ebbole DJ, Yanofsky C (1995) Light and developmental regulation of the gene con-10 of Neurospora crassa. Dev Biol 167:190–200

    Article  PubMed  CAS  Google Scholar 

  • Davis RH (2000) Neurospora: contributions of a model organism. Oxford University Press, New York

    Google Scholar 

  • Davis RH, Serres FJd (1970) Genetic and microbiological research techniques in Neurospora crassa. Methods Enzymol 71A:79–143

    Article  Google Scholar 

  • Dunlap J, Loros J (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC et al (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96

    PubMed  CAS  Google Scholar 

  • Ebbole DJ (1996) Morphogenesis and vegetative differentiation in filamentous fungi. J Genet 75:361–374

    Google Scholar 

  • Ebbole DJ (1998) Carbon catabolite repression of gene expression and conidiation in Neurospora crassa. Fungal Genet Biol 25:15–21

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Shi L, Brown LS (2007) Structural basis of diversification of fungal retinal proteins probed by site-directed mutagenesis of Leptosphaeria rhodopsin. FEBS Lett 581:2557–2561

    Article  PubMed  CAS  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    Article  PubMed  CAS  Google Scholar 

  • Furutani Y, et al. (2006) Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump. Biochemistry 45:15349–15358

    Article  PubMed  CAS  Google Scholar 

  • Hager KM, Yanofsky C (1990) Genes expressed during conidiation in Neurospora crassa: molecular characterization of con-13. Gene 96:153–159

    Article  PubMed  CAS  Google Scholar 

  • Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256

    Article  PubMed  CAS  Google Scholar 

  • Harding RW, Turner RV (1981) Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol 68:745–748

    PubMed  CAS  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    Article  PubMed  CAS  Google Scholar 

  • He Q, Liu Y (2005) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Howlett BJ (2001) Characterization of an opsin gene from the ascomycete Leptosphaeria maculans. Genome 44:167–171

    Article  PubMed  CAS  Google Scholar 

  • Iigusa H, Yoshida Y, Hasunuma K (2005) Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett 579:4012–4016

    Article  PubMed  CAS  Google Scholar 

  • Klein RM (1992) Effects of green light on biological systems. Biol Rev Camb Philos Soc 67:199–284

    PubMed  CAS  Google Scholar 

  • Lauter F-R, Yamashiro CT, Yanofsky C (1997) Light stimulation of conidiation in Neurospora crassa: studies with the wild-type strain and mutants wc-1, wc-2 and acon-2. J Photochem Photobiol B 37:203–211

    Article  CAS  Google Scholar 

  • Lauter FR (1996) Molecular genetics of fungal photobiology. J Genet 75:375–386

    Article  CAS  Google Scholar 

  • Lauter FR, Russo VE (1991) Blue light induction of conidiation-specific genes in Neurospora crassa. Nucleic Acids Res 19:6883–6886

    Article  PubMed  CAS  Google Scholar 

  • Lauter FR, Russo VE, Yanofsky C (1992) Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev 6:2373–2381

    Article  PubMed  CAS  Google Scholar 

  • Lauter FR, Yanofsky C (1993) Day/night and circadian rhythm control of con gene expression in Neurospora. Proc Natl Acad Sci USA 90:8249–8253

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Ebbole DJ (1998) Tissue-specific repression of starvation and stress responses of the Neurospora crassa con-10 gene is mediated by RCO1. Fungal Genet Biol 23:269–278

    Article  PubMed  CAS  Google Scholar 

  • Li C, Sachs MS, Schmidhauser TJ (1997) Developmental and photoregulation of three Neurospora crassa carotenogenic genes during conidiation induced by desiccation. Fungal Genet Biol 21:101–108

    Article  PubMed  CAS  Google Scholar 

  • Li C, Schmidhauser TJ (1995) Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol 169:90–95

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. Embo J 16:98–109

    Article  PubMed  CAS  Google Scholar 

  • Michan S, Lledias F, Hansberg W (2003) Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell 2:798–808

    Article  PubMed  CAS  Google Scholar 

  • Mueller JP, Bukusoglu G, Sonenshein AL (1992) Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP–ComA signal transduction system. J Bacteriol 174:4361–4373

    PubMed  CAS  Google Scholar 

  • Orbach MJ, Sachs MS, Yanofsky C (1990) The Neurospora crassa arg-2 locus. Structure and expression of the gene encoding the small subunit of arginine-specific carbamoyl phosphate synthetase. J Biol Chem 265:10981–10987

    PubMed  CAS  Google Scholar 

  • Paidhungat M, Garrett S (1997) A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17:6339–6347

    PubMed  CAS  Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coot P, Cole M (1997) Hsp30, the integral plasma membrane heat-shock-protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2:12–24

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Light D, Brambl R (1983) Paedogenetic conidiation in Neurospora crassa. Exp Mycol 7:283–286

    Article  Google Scholar 

  • Prado MM, Prado-Cabrero A, Fernandez-Martin R, Avalos J (2004) A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Genet 46:47–58

    Article  PubMed  CAS  Google Scholar 

  • Rerngsamran P, Murphy MB, Doyle SA, Ebbole DJ (2005) Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol Microbiol 56:282–297

    Article  PubMed  CAS  Google Scholar 

  • Sachs MS, Yanofsky C (1991) Developmental expression of genes involved in conidiation and amino acid biosynthesis in Neurospora crassa. Dev Biol 148:117–128

    Article  PubMed  CAS  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, Yanofsky C (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem 269:12060–12066

    PubMed  CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379

    Article  PubMed  CAS  Google Scholar 

  • Seymour IJ, Piper PW (1999) Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145(Pt 1):231–239

    PubMed  CAS  Google Scholar 

  • Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469

    PubMed  CAS  Google Scholar 

  • Siegel RW, Matsuyama SS, Urey JC (1968) Induced macroconidia formation in Neurospora crassa. Experientia 24:1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Sone T, Griffiths AJ (1999) The frost gene of Neurospora crassa is a homolog of yeast cdc1 and affects hyphal branching via manganese homeostasis. Fungal Genet Biol 28:227–237

    Article  PubMed  CAS  Google Scholar 

  • Springer ML (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays 15:365–374

    Article  PubMed  CAS  Google Scholar 

  • Springer ML, Yanofsky C (1989) A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev 3:559–571

    Article  PubMed  CAS  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14:480–487

    PubMed  CAS  Google Scholar 

  • That TC, Turian G (1978) Ultrastructural study of microcyclic macroconidiation in Neurospora crassa. Arch Microbiol 116:279–288

    Article  PubMed  CAS  Google Scholar 

  • Tsui H-CT, Pease AJ, Koehler TM, Winkler ME (1994) Detection and quantitation of RNA transcribed from bacterial chromosomes and plasmids. In: Adolph KW (ed) Methods in molecular genetics. Academic, San Diego, pp 197–200

    Google Scholar 

  • Waschuk SA, Bezerra AG Jr, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102:6879–6883

    Article  PubMed  CAS  Google Scholar 

  • Westergaard M, Mitchell HK (1947) Neurospora V. A synthetic medium favoring sexual reproduction. Am J Bot 34:573–577

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Marek Nemcovic, Donald Natvig, Jennifer Loros, Ann Kays and Svetlana Krystofova for many helpful discussions, Daniel Ebbole for plasmids and the John Spudich laboratory for use of their Alpha Imager TM 2200 Documentation and Analysis System. This work was supported by National Science Foundation Grant MCB-0296055 (to K.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Borkovich.

Additional information

Communicated by G. Braus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieszke, J.A., Li, L. & Borkovich, K.A. The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa . Curr Genet 52, 149–157 (2007). https://doi.org/10.1007/s00294-007-0148-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0148-8

Keywords

Navigation