Skip to main content

The Slightest Whiff of Air: Airflow Sensing in Arthropods

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

The perception of medium flows has received ever increasing attention during the last two decades and has increasingly been recognized as a sensory capacity of its own. A combination of experimental work and physical–mathematical modeling has deepened our understanding of the workings of airflow sensors, mainly represented by insect filiform hairs and arachnid trichobothria, both as individual sensors and sensor arrays. This chapter points to the diversity of arthropod airflow sensors and stresses the importance of comparative studies. These should include animal groups so far largely neglected by sensory biology and neuroethology. Another need is to analyze biologically relevant flow patterns and to relate these to the functional properties of the various patterns of sensor arrangement found in different animal taxa. Finally, the capture of a freely flying fly by a wandering spider is taken to illustrate the challenges and promises of studies that aim to reveal the relation between a particular airflow pattern and a specific behavior.

Dedicated to the memory of Joseph AC Humphrey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It has recently been shown that C. salei also jumps at dark disks slowly moving across a computer screen. Attack behavior can therefore be elicited independently by substrate vibrations, airflow stimuli, and visual stimuli (Fenk et al. 2010). The significance of the latter under field conditions, taking into account the spider’s nocturnal activity, still remains to be shown.

References

  • Albert JT, Friedrich OC, Dechant H-E, Barth FG (2001) Arthropod touch reception: spider hair sensilla as rapid touch detectors. J Comp Physiol A 187:303–312

    Article  CAS  PubMed  Google Scholar 

  • Alberti G, Moreno AI, Kratzmann M (1994) The fine structure of trichobothria in moss mites with special emphasis on Acrogalumna longipluma (Berlese, 1904) (Oribatida, Acari, Arachnida). Acta Zool (Stockholm) 75(1):57–74

    Article  Google Scholar 

  • Altner H (1977) Insect sensillum specificity and structure: an approach to a new typology. In: LeMagnen J, MacLeod P (eds) Olfaction and taste, vol VI., Paris Information retrieval, London, Washington DC, pp 295–303

    Google Scholar 

  • Anton S (1991) Zentrale Projektionen von Mechano- und Chemoreceptoren bei der Jagdspinne Cupiennius salei Keys. Doctoral thesis, University of Vienna

    Google Scholar 

  • Barth FG (1997) Vibratory communication in spiders: adaptation and compromise at many levels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, pp 247–272

    Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Trichobothria: the measurement of air movement, Chap. IX. Springer, Berlin Heidelberg, pp 85–109

    Google Scholar 

  • Barth FG, Dechant H-E (2003) Arthropod cuticular hairs: tactile sensors and the refinement of stimulus transformation. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, New York, pp 159–171

    Chapter  Google Scholar 

  • Barth FG, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol A 148:175–185

    Google Scholar 

  • Barth FG, Höller A (1999) Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Phil Trans R Soc Lond B 354:183–192

    Article  Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Phil Trans R Soc Lond B 340:445–461

    Article  Google Scholar 

  • Barth FG, Humphrey JAC, Wastl U, Halbritter J, Brittinger W (1995) Dynamics of arthropod filiform hairs. III. Flow patterns related to air movement detection in a spider (Cupiennius salei Keys.). Phil Trans R Soc Lond B 347:397–412

    Article  Google Scholar 

  • Bathellier B, Barth FG, Albert JT, Humphrey JAC (2005) Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei. J Comp Physiol A 191:733–746. See also Erratum (2010) J Comp Physiol A 196:89

    Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in Zoology, vol 41. G Fischer, Stuttgart, p 115

    Google Scholar 

  • Brittinger W (1998) Trichobothrien, Medienströmung und das Verhalten der Jagdspinnen (Cupiennius salei Keys.). Doctoral thesis, University of Vienna

    Google Scholar 

  • Budelmann BU (1989) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 607–632

    Chapter  Google Scholar 

  • Camhi J (1984) Neuroethology: nerve cells and the natural behaviour of animals. Sinauer, Sunderland MA

    Google Scholar 

  • Casas J, Dangles O (2010) Physical ecology of fluid flow sensing in arthropods. Annu Rev Entomol 55:505–520

    Article  CAS  PubMed  Google Scholar 

  • Casas J, Steinmann T, Dangles O (2008) The aerodynamic signature of running spiders. PLoS ONE 3(5):e2116 (p 6)

    Google Scholar 

  • Casas J, Steinmann T, Krijnen G (2010) Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors. J R Soc Interface. doi:10.1098/rsif.2010.0093

    Google Scholar 

  • Cheer AYL, Koehl MAR (1987) Paddles and rakes: fluid flow through bristled appendages of small organisms. J Theor Biol 129:17–39

    Article  Google Scholar 

  • Christian UH (1971) Zur Feinstruktur der Trichobothrien der Winkelspinne Tegenaria derhami (Scopoli), (Agelenidae, Araneae). Cytobiologie 4:172–185

    Google Scholar 

  • Christian UH (1972) Trichobothrien, ein Mechanoreceptor bei Spinnen. Elektronenmikroskopische Befunde bei der Winkelspinne Tegenaria derhami (Scopoli), (Agelenidae, Araneae). Verh Dtsch Zool Ges 66:31–36

    Google Scholar 

  • Coombs S, Görner P, Münz H (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York

    Book  Google Scholar 

  • Cummins B, Gedeon T (2012) Assessing the mechanical response of groups of arthropod filiform flow sensors. In: Barth FG, Humphrey JAC, Srinivasan MV (eds) Frontiers in sensing from biology to engineering. Springer, New York, pp 239–250

    Chapter  Google Scholar 

  • Cummins B, Gedeon T, Klapper I, Cortez R (2007) Interaction between arthropod filiform hairs in a fluid environment. J Theor Biol 247:266–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Dangles O, Pierre D, Vannier F, Casas J (2006) Ontogeny of air-motion sensing in cricket. J Exp Biol 209:4363–4370

    Article  CAS  PubMed  Google Scholar 

  • Dechant H-E, Rammerstorfer FG, Barth FG (2001) Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs. J Comp Physiol A 187:313–322

    Article  CAS  PubMed  Google Scholar 

  • Devarakonda R, Barth FG, Humphrey JAC (1996) Dynamics of arthropod filiform hairs. IV. Hair motion in air and water. Phil Trans R Soc Lond B 351:933–946

    Article  Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337–340

    Article  CAS  PubMed  Google Scholar 

  • Draslar K (1973) Functional properties of trichobothria in the bug Pyrrhocoris apterus (L.). J Comp Physiol 84:175–184

    Article  Google Scholar 

  • Dumpert K, Gnatzy W (1977) Cricket combined mechanoreceptors and kicking response. J Comp Physiol 122:9–25

    Article  Google Scholar 

  • Fenk LM, Hoinkes T, Schmid A (2010) Vision as a third sensory modality to elicit attack behavior in a nocturnal spider. J Comp Physiol A 196:957–961

    Article  CAS  Google Scholar 

  • Fletcher NH (1978) Acoustical response of hair receptors in insects. J Comp Physiol 127:185–189

    Article  Google Scholar 

  • Friedel T, Barth FG (1997) Wind-sensitive interneurons in the spider CNS (Cupiennius salei): directional information processing of sensory inputs from trichobothria on the walking legs. J Comp Physiol A 180:223–233

    Article  Google Scholar 

  • Gitter AH, Klinke R (1989) Die Energieschwellen von Auge und Ohr in heutiger Sicht. Naturwissenschaften 76:160–164

    Article  Google Scholar 

  • Gnatzy W (1996) Digger wasp vs. cricket: Neuroethology of a predator-prey interaction. In: Lindauer M (ed) Information processing in animals, vol 10. G Fischer, Stuttgart, 92 pp

    Google Scholar 

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463

    CAS  PubMed  Google Scholar 

  • Görner P (1965) A proposed transducing mechanism for a multiply innervated mechanoreceptor (trichobothrium) in spiders. Cold Spring Harbor Symp Quant Biol 30:69–73

    Article  PubMed  Google Scholar 

  • Görner P, Andrews P (1969) Trichobothrien, ein Ferntastsinnesorgan bei Webspinnen (Araneen). Z vergl Physiol 64:301–317

    Article  Google Scholar 

  • Große S, Schröder W (2012) Deflection-based flow field sensors: examples and requirements. In: Barth FG, Humphrey JAC, Srinivasan MV (eds) Frontiers in sensing—from biology to engineering. Springer, New York, pp 393–403

    Chapter  Google Scholar 

  • Harvey MS (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebr Taxon 6:1373–1435

    Article  Google Scholar 

  • Haupt J (1970) Beitrag zur Kenntnis der Sinnesorgane von Symphylen (Myriapoda). I. Elektronenmikroskopische Untersuchung des Trichobothriums von Scutigerella immaculata Newport. Z Zellforsch mikr Anat 110:588–599

    Article  CAS  Google Scholar 

  • Haupt J (1980) Phylogenetic aspects of recent studies on myriapod sense organs. In: Camatini M (ed) Myriapod biology. Academic Press, London, pp 391–406

    Google Scholar 

  • Haupt J (1996) Fine structure of the trichobothria and their regeneration during moulting in the whip scorpion Typopeltis crucifer Pocock, 1894. Acta Zool (Stockholm) 77(2):123–136

    Article  Google Scholar 

  • Haupt J, Coineau Y (1975) Trichobothrien und Tastborsten der Milbe Microcaeculus (Acari, Prostigmata; Caeculidae). Z Morph Tiere 81:305–322

    Article  Google Scholar 

  • Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol 152:347–359

    Article  Google Scholar 

  • Heys J, Gedeon T, Knott BC, Kim Y (2008) Modeling arthropod hair motion using the penalty immersed boundary layer method. J Biomech Eng 41:977–984

    CAS  Google Scholar 

  • Hoffmann C (1967) Bau und Funktion der Trichobothrien von Euscorpius carpathicus L. Z vergl Physiol 54:290–352

    Article  Google Scholar 

  • Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds) Insect mechanics and control. Adv Insect Physiol 34:1–81

    Google Scholar 

  • Humphrey JAC, Barth FG, Reed M, Spak A (2003) The physics of arthropod medium-flow sensitive hairs: biological models for artificial sensors. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, Wien, New York, pp 129–144

    Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias J, Barth FG (1993) Dynamics of arthropod filiform hairs. I. Mathematical modeling of the hair and air motions. Phil Trans R Soc Lond B 340:423–444

    Google Scholar 

  • Igelmund P (1987) Morphology, sense organs and regeneration of the forelegs (whips) of the whip spider Heterophrynus elaphus (Arachnida, Amblypygi). J Morphol 193:75–89

    Article  Google Scholar 

  • Izadi N, Krijnen GJM (2012) Design and fabrication process for artificial lateral line sensors. In: Barth FG, Humphrey JAC, Srinivasan MV (eds) Frontiers in sensing—from biology to engineering. Springer, Wien, New York, pp 405–421

    Chapter  Google Scholar 

  • Judson MLI (2007) A new and endangered pseudoscorpion of the genus Lagynochthonius (Arachnida, Chelonethi, Chthoniidae) from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini. Zootaxa 1627:53–68

    Google Scholar 

  • Kant R, Humphrey JAC (2009) Response of cricket and spider motion-sensing hairs to airflow pulsations. J R Soc Interface 6:1047–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klärner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). J Comp Physiol 148:445–455

    Article  Google Scholar 

  • Klopsch Ch (2010) The flow field around a flying blowfly: characteristics and guidance of spider prey capture behaviour. Vienna University of Technology, Doctoral thesis

    Google Scholar 

  • Klopsch Ch, Kuhlmann HC, Barth FG (2012) Airflow elicits a spider’s jump towards airborne prey. I. Airflow around a flying blowfly. J R Soc Interface 9:2591–2602. doi:10.1098/rsif.2012.0186

    PubMed Central  PubMed  Google Scholar 

  • Klopsch Ch, Kuhlmann HC, Barth FG (2013) Airflow elicits a spider’s jump towards airborne prey. II. Flow characteristics guiding behavior. J R Soc Interface 10:82. doi:10.20120820

  • Landolfa MA, Jacobs GA (1995) Direction sensitivity of the filiform hair population of the cricket cercal system. J Comp Physiol A 177:759–766

    Google Scholar 

  • Lehtinen PT (1980) Trichobothrial patterns in high level taxonomy of spiders. In: Proceedings of 8th international conference on Arachnol. Egermann, Wien, pp 493–498

    Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380:165–168

    Article  CAS  PubMed  Google Scholar 

  • Lewin GC, Hallam J (2010) A computational fluid dynamics model of viscous coupling of hairs. J Comp Physiol A 196:385–395

    Article  Google Scholar 

  • Magal C, Dangles O, Caporroy P, Casas J (2006) Hair canopy of cricket sensory system tuned to predator signals. J Theor Biol 241:459–466

    Article  PubMed  Google Scholar 

  • Mahnert V (1976) Etude comparative des trichobothries de pseudoscorpions au microscope électronique à balayage. CR Séanc Soc Phys Hist Nat 11:96–99

    Google Scholar 

  • Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L (Lepidoptera, Noctuidae) to particle movement in a sound field. J Comp Physiol 99:79–87

    Article  Google Scholar 

  • McConney ME, Tsukruk VV (2012) Synthetic materials for bio-inspired flow-responsive structures. In: Barth FG, Humphrey JAC, Srinivasan MV (eds) Frontiers in sensing—from biology to engineering. Springer, Wien, New York, pp 341–349

    Google Scholar 

  • McConney ME, Schaber CF, Julian MD, Eberhardt WC, Humphrey JAC, Barth FG, Tsukruk VV (2009) Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J R Soc Interface 6(37):681–694

    Article  PubMed Central  PubMed  Google Scholar 

  • Messlinger K (1987) Fine structure of scorpion trichobothria (Arachnida, Scorpiones) Zoomorph 107:49–57

    Google Scholar 

  • Müllan R (2012) Air-flow sensing in Smeringurus mesaensis (Scorpiones: Vaejovidae). Sensor arrangement, behavioral significance and oscillation characteristics of scorpion trichobothria. Doctoral thesis, University of Vienna

    Google Scholar 

  • Nicklaus R (1965) Die Erregung einzelner Fadenhaare von Periplaneta americana in Abhängigkeit von der Größe und Richtung der Auslenkung. Z vergl Physiol 50:331–362

    Article  Google Scholar 

  • Peters W, Pfreundt C (1986) Die Verteilung von Trichobothrien und lyraförmigen Organen an den Laufbeinen von Spinnen mit unterschiedlicher Lebensweise. Zool Beitr N F 29:209–225

    Google Scholar 

  • Paydar S, Doan CA, Jacobs CA (1999) Neural mapping of direction and frequency in the cricket cercal sensory system. J Neurosci 19:1771–1781

    CAS  PubMed  Google Scholar 

  • Reissland A, Görner P (1985) Trichobothria. In: Barth FG (ed) Neurobiology of arachnids. Springer, Heidelberg, pp 138–161

    Google Scholar 

  • Santer RD, Hebets EA (2008) Agonistic signals received by arthropod filiform hair allude to the prevalence of near-field sound communication. Proc R Soc B 275:363–368

    Article  PubMed  Google Scholar 

  • Schaber CF, Gorb SN, Barth FG (2012) Force transformation in spider strain sensors: white light interferometry. J R Soc Interface 9(71):1254–1264

    Article  PubMed Central  PubMed  Google Scholar 

  • Schilstra C, van Hateren JH (1999) Blowfly flight and optic. I. Thorax kinematics and flight dynamics. J Exp Biol 202:1481–1490

    PubMed  Google Scholar 

  • Schmidt K, Gnatzy W (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus Deg (Saltatoria, Gryllidae). II. Die Häutung der Faden- und Keulenhaare. Z Zellforsch 122:210–226

    Article  CAS  PubMed  Google Scholar 

  • Schuh RT (1975) The structure, distribution, and taxonomic importance of trichobothria in the Miridae (Hemiptera). Am Mus Novit 2585:1–26

    Google Scholar 

  • Shimozawa T, Kanou M (1984a) Varieties of filiform hairs: range fractionation by sensory afferents and cercal interneurons of a cricket. J Comp Physiol A 155:485–493

    Article  Google Scholar 

  • Shimozawa T, Kanou M (1984b) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155:495–505

    Article  Google Scholar 

  • Shimozawa T, Murakami J, Kumagai T (1998) Cricket wind receptor cell detects mechanical energy of the level of kT of thermal fluctuation. Abstract 112, International Society of Neuroethology Conference, San Diego

    Google Scholar 

  • Shimozawa T, Murakami J, Kumagai T (2003) Cricket wind receptors: thermal noise for the highest sensitivity known. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering, Chap 10. Springer, Wien, New York, pp 145–157

    Google Scholar 

  • Steinmann T, Casas J, Krijnen G, Dangles O (2006) Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages. J Exp Biol 209:4398–4408

    Article  CAS  PubMed  Google Scholar 

  • Suter RB (2003) Trichobothrial mediation of an aquatic escape response: directional jumps by the fishing spider, Dolomedes triton, foil frog attacks. J Insect Sci 3:19–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I. Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31

    Article  Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium: an unorthodox sensory capacity. Naturwissenschaften 66:452–461

    Article  Google Scholar 

  • Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to medium vibration. Behav Ecol Sociobiol 4:101–110

    Article  Google Scholar 

  • Theiß J (1979) Mechanoreceptive bristles on the head of the blowfly: mechanics and electrophysiology of the macrochaetae. J Comp Physiol 132:55–68

    Article  Google Scholar 

  • Thurm U (1982) Biophysik der Mechanorezeption. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, 2nd edn. Springer, Berlin Heidelberg, pp 691–696

    Google Scholar 

  • Triblehorn JD, Yager DD (2006) Wind generated by an attacking bat: anemometric measurements and detection by the praying mantis cercal system. J Exp Biol 209:1430–1440

    Article  PubMed  Google Scholar 

  • Tropaea C, Bleckmann H (2012) Nature-inspired fluid mechanics. Springer, Heidelberg, 372 pp

    Book  Google Scholar 

  • Vachon M (1973) Etude des caractères utilisées pour classer les familles et les genres de scorpions (Arachnides). 1. La trichobothriotaxie en arachnologie. Sigles trichobothriaux et types de trichobothriotaxie chez les scorpions. Bull Mus Hist Nat 3 Ser 140:857–958

    Google Scholar 

  • Weygoldt P (1995) A whip spider that ate rolled oats, with observations on prey-capture behaviour in whip spiders. Newsl Br Arachnol Soc 74:6–8

    Google Scholar 

  • Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo Books, Stenstrup

    Google Scholar 

  • Weygoldt P, Paulus H (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. I. Morphologische Untersuchungen. Z zool Systematik Evolutionsforschung 17:85–116

    Article  Google Scholar 

Download references

Acknowledgments

The author’s research and that of his associates was generously supported by the DARPA BIOsenSE program grant no. FA9550-05-1-0459 and by several earlier grants of the Austrian Science Fund, FWF. The kind help of Clemens Schaber with the preparation of the figures is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich G. Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barth, F.G. (2014). The Slightest Whiff of Air: Airflow Sensing in Arthropods. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_7

Download citation

Publish with us

Policies and ethics