Skip to main content

Deflection-based flow field sensors — examples and requirements

  • Chapter
Frontiers in Sensing

Abstract

The assessment of near-wall fluid motion, acoustic vibrations, or wall-shear stress is essential in many biological and engineering systems. This necessity is evidenced by a huge diversity of sensing devices in both fields. While nature shows a broad diversity of filiform hair-like fluid sensing devices1 which have been improved towards perfection over millions of years, researchers have recently attempted to copy and adapt these biological examples for technical applications. In particular the fish lateral line flow sensor and the filiform arthropod hairlike medium motion sensors have inspired researchers to develop artificial hair sensor arrays based on flexible cantilevers and micro-posts. Therefore, in this article, after a brief description of some examples of biological deflection-based sensor devices, recent man-made cantilever-based sensors for the detection of near-wall fluid motion and wall-shear stress will be discussed. Furthermore, the advantages and disadvantages of different designs and general fluid-mechanical and technical requirements for flow sensors will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfredsson PH, Johansson AV, Haritonidis JH, Eckel-mann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31(5): 1026–1033

    Article  Google Scholar 

  • Barth FG, Höller A (1999) Dynamics of arthropod filiform hairs V. The response of spider tri-chobothria to natural stimuli. Phil Trans R Soc Lond B 354: 183–192

    Article  Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Phil Trans R Soc Lond B 340: 445–461

    Article  Google Scholar 

  • Bleckmann H (2007) The lateral line system of fish. In: Hara T and Zielinski B (eds) Sensory systems neuroscience. Elsevier Academic Press, Amsterdam, Netherlands; Boston, MA, 411–453

    Google Scholar 

  • Chen J, Fan Z, Zou J, Engel J, Liu C (2003) Two-dimensional micromachined flow sensor array for fluid mechanics studies. J Aerosp Eng 16(2): 85–97

    Article  Google Scholar 

  • Chen N, Tucker C, Engel J. M, Yang Y, Pandya S, Liu C (2007) Design and characterisation of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity. J MEMS 16(5): 999–1014

    Article  CAS  Google Scholar 

  • Dijkgraaf S (1962) The functioning and significance of the lateral-line organs. Biol Rev 38(1): 51–105

    Article  Google Scholar 

  • Dijkstra M, Baar JJ, Wiegerink RJ, Lammerink TSJ, Boer JH, Krijnen GJM (2005) Artificial sensory hairs based on the flow sensitive receptor hairs of crickets. J Micromech Microeng 15: 132–138

    Article  Google Scholar 

  • Engel J, Chen J, Liu C, Bullen D (2006) Polyurethane rubber all-polymer artificial hair cell sensor. J MEMS 15(5): 729–736

    Article  CAS  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Neurobiology — hydrodynamic stimuli and the fish lateral line. Nature 408(6808): 51–52

    Article  PubMed  CAS  Google Scholar 

  • Fan Z, Chen J, Zou J, Bullen D, Liu C, Delcomyn F (2002) Design and fabrication of artificial lateral line flow sensors. J Micromech Microeng 12(5): 655–661

    Article  Google Scholar 

  • Große S (2008) Development of the micro-pillar shear-stress sensor MPS3 for turbulent flows. Doctoral thesis, Faculty of Mechanical Engineering, RWTH Aachen University, Shaker Verlag, Aachen

    Google Scholar 

  • Große S, Schröder W (2008 a) Dynamic wall-shear stress measurements in turbulent pipe flow using the micro-pillar sensor MPS3. Int J Heat Fluid Flow 29(3): 830–840

    Article  Google Scholar 

  • Große S, Schröder W (2008 b) Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3. Meas Sci Technol 19(1): 015 403

    Article  Google Scholar 

  • Große S, Schröder W (2009 a) The micro-pillar shear-stress sensor MPS3. Sensors 9(4): 2222–2251

    Article  PubMed  Google Scholar 

  • Große S, Schröder W (2009 b) Two-dimensional visualization of turbulent wall-shear stress using micro-pillars. AIAA J 47(2): 314–321

    Article  Google Scholar 

  • Große S, Schröder W (2009 c) Wall-shear stress patterns of coherent structures in turbulent duct flow. J Fluid Mech 633: 147–158

    Article  Google Scholar 

  • Große S, Schröder W (2009 d) High Reynolds number turbulent wind tunnel boundary layer wall-shear stress sensor. J Turbul 10(14): 1–12

    Google Scholar 

  • Große S, Schröder W, Brücker C (2006) Nano-new-ton drag sensor based on flexible micro-pillars. Meas Sci Technol 17(10): 2689–2697

    Article  Google Scholar 

  • Große S, Soodt T, Schröder W (2008) Dynamic calibration technique for the micro-pillar pillar shear-stress sensor MPS3. Meas Sci Technol 19(10): 105 201

    Article  Google Scholar 

  • Humphrey JAC, Barth FG (2007) Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds.) Advances in insect physiology, Academic Press 34: 1–80

    Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs I. Mathematical modelling of the hair and air motions. Phil Trans R Soc Lond B 340: 423–444

    Article  Google Scholar 

  • Krijnen GJM, Dijkstra M, Baar JJ, Shankar SS, Kuipers WJ, Boer RJH, Altpeter D, Lammerink TSJ, Wiegerink R (2006) MEMS based hair flow-sensors as model systems for acoustic perception studies. Nanotech 17: 84–89

    Article  Google Scholar 

  • Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MAL (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21: 5752–5763

    PubMed  CAS  Google Scholar 

  • Liu C (2007) Micromachined biomimetic artificial haircell sensors. Bioinspiration Biomimetics 2: 162–169

    Article  Google Scholar 

  • Ozaki Y, Ohyama T, Yasuda T, Shimoyama I (2000) An air flow sensor modeled on wind receptor hairs of insects. Proc MEMS, Miyazaki, Japan, 531–536

    Google Scholar 

  • Padmanabhan A (1997) Silicon micromachined sensors and sensor arrays for shear-stress measurements in aerodynamic flows. PhD thesis, Department of Mechanical Engineering, MIT, USA

    Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry — A practical guide. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shimozawa T, Kumagai T, Baba Y (1998) Structural scaling and functional design of the cercal wind-receptor hairs of cricket. J Comp Physiol A 183: 171–186

    Article  Google Scholar 

  • Suzuki Y, Kasagi N (1992) Evaluation of hot-wire measurements in wall shear turbulence using a direct numerical simulation database. Exp Thermal Fluid Sci 5: 69–77

    Article  CAS  Google Scholar 

  • Tucker C, Chen N, Engel J, Yang Y, Pandya S, Liu C (2006) High-sensitivity bi-directional flow sensor based on biological inspiration of animal haircell sensors. Proc 5th IEEE Sensors Conference, Daegu, Korea

    Google Scholar 

  • van der Heiden K, Groenendijk BCW, Hierck BP, Hogers B, Koerten HK, Mommaas AAM, Groot ACG, Poelmann RE (2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 235: 19–28

    Article  PubMed  Google Scholar 

  • Womersley J. R (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127: 553–563

    PubMed  CAS  Google Scholar 

  • Yang Y, Nguyen N, Chen N, Lockwood M, Tucker C, Hu H, Bleckmann H, Liu C, Jones DL (2010) Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinspiration Biomimetics 5: 106 001

    Article  Google Scholar 

  • Zou J, Chen J, Liu C (2001) Plastic deformation magnetic assembly (PDMA) of out-of-plane micro-structures: Technology and application 3029. J MEMS 10: 302–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Große, S., Schröder, W. (2012). Deflection-based flow field sensors — examples and requirements. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_27

Download citation

Publish with us

Policies and ethics