Skip to main content

Neuronal Basis of Source Localisation and the Processing of Bulk Water Flow with the Fish Lateral Line

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

Fish perceive local water motions and local pressure gradients with their mechanosensory lateral line. The sensory units of the lateral line are the neuromasts that are distributed across the surface of the animal. Water motions are received and transduced into neuronal signals by neuromast hair cells. The information is then conveyed by afferent nerve fibers to the fish brain and processed by lateral line neurons in distinct nuclei of the brainstem, cerebellum, midbrain, and forebrain. The present review introduces the peripheral morphology of the lateral line and describes physiological work, thereby focussing on recent studies that have investigated what kind of sensory information is provided by dipole sources and bulk water flow, and how fish use and process this flow information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALLN:

Anterior lateral line nerve

CN:

Canal neuromast

MON:

Medial octavolateralis nucleus

PLLN:

Posterior lateral line nerve

PIV:

Particle image velocimetry

PSTH:

Peri stimulus time histogram

SN:

Superficial neuromast

RF:

Receptive field

TS:

Torus semicircularis

References

  • Ali R, Mogdans J, Bleckmann H (2010) Responses of medullary lateral line units of the goldfish, Carassius auratus, to amplitude-modulated sinusoidal wave stimuli. Intern J Zool 2010:1–14

    Article  Google Scholar 

  • Baker CF, Montgomery JC (1999a) Lateral line mediated rheotaxis in the Antarctic fish Pagnothenia borchgrevinki. Polar Biol 21:305–309

    Article  Google Scholar 

  • Baker CF, Montgomery JC (1999b) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184:519–527

    Article  Google Scholar 

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167:347–356

    Article  Google Scholar 

  • Bastian J (1986) Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe. J Comp Physiol A 158:505–515

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195:391–414

    Article  CAS  PubMed  Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50:17–31

    Google Scholar 

  • Bleckmann H (2007) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    Article  Google Scholar 

  • Bleckmann H, Bullock TH (1989) Central nervous physiology of the lateral line, with special reference to cartilaginous fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 387–408

    Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    CAS  PubMed  Google Scholar 

  • Bleckmann H, Bullock TH, Jørgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161:67–84

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H, Mogdans J, Dehnhardt G (2003) Processing of dipole and more complex hydrodynamic stimuli under still- and running-water conditions. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York, pp 108–121

    Chapter  Google Scholar 

  • Bleckmann H, Przybilla A, Klein A, Schmitz A, Kunze S, Brücker C (2012) Station holding of trout: behavior, physiology and hydrodynamics. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics. Notes on numerical fluid mechanics and multidisciplinary design. Springer, Berlin, pp 161–187

    Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989a) The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 501–526

    Chapter  Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989b) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164:459–474

    Article  CAS  PubMed  Google Scholar 

  • Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwi 79:220–221

    Article  Google Scholar 

  • Blübaum-Gronau E, Münz H (1987) Topological representation of primary afferents in various segments of the lateral line system in the butterflyfish, Pantodon buchholzi. Verhandlungen der Deutschen Zoologischen Gesellschaft. Gustav Fischer, Stuttgart, pp 268–269

    Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol A 127:61–74

    Article  Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Ann Rev Neurosci 16:223–243

    Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl's brainstem. Proc Natl Acad Sci USA 85:8311–8315

    Google Scholar 

  • Von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Article  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann M (2007) Kármán vortex street detection by the lateral line. J Comp Physiol A 193:753–763

    Article  Google Scholar 

  • Chagnaud B, Brücker C, Hofmann MH, Bleckmann H (2008a) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487

    Article  CAS  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann MH (2008b) Lateral line nerve fibers do not respond to bulk water flow direction. Zoology 111:204–207

    Article  PubMed  Google Scholar 

  • Claas B, Münz H (1981) Projection of lateral line afferents in a teleost brain. Neurosci Lett 23:287–290

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–416

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:609–626

    Article  Google Scholar 

  • Curcic-Blake B, van Netten SM (2006) Source localization encoding in the fish lateral line. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc London B 218:1–26

    Article  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of lateral line canals. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617

    Chapter  Google Scholar 

  • Echteler SM (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551

    Article  CAS  PubMed  Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1993) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6: 1070–1087

    Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still- and running water. Zoology 107:135–151

    Article  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    Article  CAS  PubMed  Google Scholar 

  • Fiebig E (1988) Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): a study with WGA-HRP and extracellular granule cell recording. J Comp Neurol 268:567–583

    Article  CAS  PubMed  Google Scholar 

  • Flock A (1965) Electronmicroscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol 199:1–90

    Google Scholar 

  • Flock A, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15:19–27

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (1981) The pattern of lateral-line afferents in urodeles: a horseradish-peroxidase study. Cell Tiss Res 218:581–594

    Article  CAS  Google Scholar 

  • Gläser N, Otter C, Dehnhardt G, Hanke W (2011) Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A 197:141–151

    Article  Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). J Comp Physiol A 47:316–338

    Google Scholar 

  • Goulet J, Engelmann J, Chagnaud B, Franosch J-MP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17

    Article  Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Harris GG, Frishkopf LS, Flock Å (1970) Receptor potentials from hair cells of the lateral line. Science 167:76–79

    Article  CAS  PubMed  Google Scholar 

  • Heiligenberg W, Bastian J (1984) The electric sense of weakly electric fish. Ann Rev Psychol 46:561–583

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture of the cat’s visual cortex. J Physiol 160:106–154

    CAS  PubMed  Google Scholar 

  • Janssen J (1997) Comparison of response distance to prey via the lateral line in the ruffe and the yellow perch. J Fish Biol 51:921–930

    Article  Google Scholar 

  • Janssen J, Corcoran J (1993) Lateral line stimuli can override vision to determine sun fish strike trajectory. J Exp Biol 176:299–305

    CAS  PubMed  Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21:1235–1238

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 187–216

    Chapter  Google Scholar 

  • Kaus S, Schwartz E (1986) Reaction of young Betta splendens to surface waves of the water In: Barth FG, Seyfarth EA (eds) Verhandlungen der Deutschen Zoologischen Gesellschaft. Gustav Fischer, Stuttgart, pp 218–219

    Google Scholar 

  • Kirsch JA, Hofmann MH, Mogdans J, Bleckmann H (2002) Response properties of diencephalic neurons to visual, acoustic and hydrodynamic stimulation in the goldfish, Carassius auratus. Zoology 105:61–70

    Article  PubMed  Google Scholar 

  • Klein A, Münz H, Bleckmann H (2013) The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae). J Compe Physiol A 199:735–749

    Article  Google Scholar 

  • Konishi M (1983) Neuroethology of acoustic prey localization in the barn owl. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 304–317

    Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    CAS  PubMed  Google Scholar 

  • Kröther S, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still- and running water. J Exp Biol 205:1471–1484

    PubMed  Google Scholar 

  • Künzel S, Bleckmann H, Mogdans J (2011) Responses of brainstem lateral line units to different stimulus source locations and vibration directions. J Comp Physiol A 197:773–787

    Article  Google Scholar 

  • Lee LT, Bullock TH (1984) Sensory representation in the cerebellum of the catfish. J Comp Physiol A 13:157–169

    CAS  Google Scholar 

  • Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phil Trans R Soc B 362:1973–1993

    Article  PubMed  Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073

    Article  PubMed  Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–175

    Article  PubMed Central  PubMed  Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47:113–138

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Klein A, Mogdans J, Bleckmann H (2012) Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Physiol A 198:639–653

    Article  Google Scholar 

  • Mirjany M, Faber DS (2011) Characteristics of the anterior lateral line nerve input to the Mauthner cell. J Exp Biol 214:3368–3377

    Article  PubMed  Google Scholar 

  • Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude modulated hydrodynamic stimuli. J Comp Physiol A 185:173–180

    Article  Google Scholar 

  • Mogdans J, Goenechea L (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102:227–237

    Google Scholar 

  • Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104:153–166

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science 235:195–196

    Article  CAS  PubMed  Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298

    Chapter  Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366:534–546

    Article  CAS  PubMed  Google Scholar 

  • New JG, Northcutt RG (1984) Central projections of the lateral line nerves in the shovelnose sturgeon. J Comp Neurol 225:129–140

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line Neurobiology and evolution. Springer, New York, pp 17–78

    Chapter  Google Scholar 

  • Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. J Exp Biol 206:3479–3486

    Article  PubMed  Google Scholar 

  • Plachta D, Mogdans J, Bleckmann H (1999) Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. J Comp Physiol A 185:405–417

    Article  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    Article  PubMed  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Nat Acad Sci 98:7371–7374

    Article  CAS  PubMed  Google Scholar 

  • Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Fay RR, Popper AN (eds) Comparative hearing: insects. Springer, New York, p 341

    Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18:7381–7393

    CAS  PubMed  Google Scholar 

  • Przybilla A, Kunze S, Ruder A, Bleckmann H, Brücker C (2010) Entraining trout: a behavioural and hydrodynamic analysis. J Exp Biol 213:2976–2986

    Article  PubMed  Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131

    Article  CAS  PubMed  Google Scholar 

  • Rosen MW (1959) Waterflow about a swimming fish. Tech Publ US Naval Test Station, China Lake, California, NOTS TP 2298, pp 1–94

    Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–480

    Chapter  Google Scholar 

  • Satou M, Shiraishi A, Matsushima T, Okumoto N (1991) Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 168:417–428

    Article  Google Scholar 

  • Song J, Northcutt RG (1991) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63

    Article  CAS  PubMed  Google Scholar 

  • Steiner A, Bleckmann H (2012) Responses of fishes to Kármán vortex streets and artificial fish generated wakes. In: 105th annual meeting of the German Zoological Society, Konstanz

    Google Scholar 

  • Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Board Canada 32:2441–2446

    Article  Google Scholar 

  • van Netten SM, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 247–264

    Chapter  Google Scholar 

  • Vogel S (1983) Life in moving fluids. The physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Voges K, Bleckmann H (2011) Two-dimensional receptive fields of midbrain lateral line units in the goldfish, Carassius auratus. J Comp Physiol A 197:827–837

    Article  Google Scholar 

  • Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203:2495–2502

    CAS  PubMed  Google Scholar 

  • Walkowiak W, Münz H (1985) The significance of water-surface waves in the communication of fire-bellied toads. Naturwi 72:49–50

    Article  Google Scholar 

  • Waterman TH, Wiersma CAG (1963) Electrical responses in decapod crustaceans visual systems. J Cell Comp Physiol 61:1–16

    Article  CAS  PubMed  Google Scholar 

  • Weeg MS, Bass A (2002) Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity. J Neurophysiol 88:1252–1262

    PubMed  Google Scholar 

  • Weissert R, Von C Campenhausen (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol A 143:375–382

    Article  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930

    Article  PubMed  Google Scholar 

  • Will U, Luhede G, Görner P (1985) The area octavo-lateralis in Xenopus laevis. I. The primary afferent projections. Cell Tissue Res 239:147–161

    Article  Google Scholar 

  • Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101:69–82

    Google Scholar 

  • Wullimann MF, Grothe B (2013) The central nervous organization of the lateral line system. In: Coombs S, Bleckmann H, Fay RR, Popper AN (eds) Springer Handbook of Auditory Research. The Lateral Line System. Springer, New York, pp 195–251

    Google Scholar 

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Sheryl Coombs for carefully reading and commenting on the manuscript. The original research of the authors was generously supported by the DFG, the BMBF, DARPA, the BfG, DAAD, and the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Bleckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bleckmann, H., Mogdans, J. (2014). Neuronal Basis of Source Localisation and the Processing of Bulk Water Flow with the Fish Lateral Line. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_15

Download citation

Publish with us

Policies and ethics